Plasma diagnostics from optically thin plasmas

Enrico Landi University of Michigan

Plasma diagnostics: what we want to know

Anything we can

Thermal status Electron density Ion and electron temperatures Plasma thermal distribution **Dynamics Bulk motions** Non-thermal motions Composition Elemental abundances Ion abundances Magnetic field

Plan of the lecture

Focus on *EUV spectral line diagnostics only* Topics:

- 1 Basics of line formation mechanisms
- 2 Plasma diagnostics techniques
 - A. Intensity ratios
 - B. Thermal structure
 - C. Line width
 - D. Ion temperatures
 - E. Wind speed

Will neglect: magnetic field (DKIST, UCoMP)

What we measure

How to use the measurements

(Courtesy Hinode/EIS team)

Line intensity Many plasma parameters Line centroid Line-of-sight bulk speed Line width (FWHM) Non-thermal dynamics Ion temperatures

 $\frac{\lambda - \lambda_{ij}}{\lambda} = \frac{\mathbf{v}}{c}$

 $FWHM = \frac{\lambda_{ji}}{C} \sqrt{4 \ln 2 \left(\frac{2k_B T_{ion}}{M} + v_{nth}^2\right)}$

How to use the line intensity

Line intensities

Electron density and temperature Plasma thermal structure Element abundances

Line polarization Magnetic field

Exotic techniques Absorption Techniques for simultaneous diagnostics Empirical modeling

The solar coronal spectrum

The ingredients — individual volume dV

 $dW_{ji} = N_j (X^{+m}) A_{ji} h v_{ji} dV \quad erg \ s^{-1} \qquad \text{Emitted power}$ $hv_{ji} = E_j - E_i \qquad \text{Transition energy}$ $A_{ji} \qquad \text{Einstein coefficient}$ $N_j (X^{+m}) \qquad \text{Number density}$ $dV = S \ dx \qquad \text{Emitting volume}$

The optically thin assumption

$$F = \frac{S}{4\pi d^2} \int_{-\infty}^{+\infty} N_j \left(X^{+m} \right) A_{ji} h v_{ji} dx$$

The solar coronal spectrum

 X^{+m}

 $N_j(X^{+m})$ N(XLevel population Ion population

Electron density

Free electron/hydrogen ratio

N_e

X

Element abundance

(the charge state

composition)

Absolute abundance = abundance relative to H

The solar coronal spectrum

Each of these terms is our gateway to plasma properties

- $\frac{N_j(X^{+m})}{N(X^{+m})} = f(T_e, N_e)$
- $\frac{N(X^{+m})}{N(X)} = f(T_e)$

 $\frac{N(X)}{N(H)}$

 N_{e}

 $\frac{N(H)}{N_e} = f(T_e)$

Used for electron density and temperature diagnostics

Used for thermal structure diagnostics

Used for element abundance diagnostics

T-sensitive below 100,000K

Denser plasmas will emit more

The level population

Level population is the key for single ion emission

 $N_j(X^{+m})$

Ion in excited state decays to a lower energy, emitting a photon

How do I get the ion in and out an excited state?

- 1 Electron-ion collision
- 2 Photo-excitation (neglect this one)

 $\frac{X^{+m}}{X^{+m}} \stackrel{N(X^{+m})}{\longrightarrow} \frac{N(X)}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_e} N_e$

The level population

Statistical equilibrium - multi-level atom

$$\sum_{j>i} N_j N_e C_{ji}^d + \sum_{ji} N_j A_{ji} =$$
Collisional
de-excitation
from higher levels
Collisional
excitation from higher levels
lower levels
$$N_i \left(\sum_{ji} N_e C_{ij}^e + \sum_{j
Out
$$\sum_{\substack{i < N_i = 1}} N_i = 1$$$$

Normalization condition

- 1 Density determines # of electron-ion collisions
- 2 Temperature determines collision rates C^d, C^e

This system of equations is used to calculate the charge state evolution of solar wind, flares etc...

The ion population

$$N_{j}(X^{+m}) = \frac{N_{j}(X^{+m})}{N(X^{+m})} \underbrace{N(X^{+m})}_{N(X)} \underbrace{N(X)}_{N(H)} \frac{N(H)}{N_{e}} N_{e}^{H}$$

The approximations:

Ionization equilibrium No photoionization

$$0 = N_e \left[N_{i-1} \left(\alpha^{ci} + \alpha^{ea} \right) + N_{i+i} \left(\alpha^{rr} + \alpha^{dr} \right) \right] - N_e N_i \left[\alpha^{ci} + \alpha^{ea} + \alpha^{rr} + \alpha^{dr} \right]$$
$$\sum_{i=1}^N N_i = 1$$

- 1 No more dependence on electron density!
- 2 Ion population only depends on $T_{\rm e}$
- 3 Rates are STRONGLY temperature dependent

The ionization balance

An ion can be associated to a temperature range

The other parameters
$$N_{j}(X^{+m}) = \frac{N_{j}(X^{+m})}{N(X^{+m})} \frac{N(X^{+m})}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_{e}} N_{e}$$

Element abundance

- Fixed for a given plasma
- May change along LOS

- Photosphere and corona have different composition — *the FIP effect*

The other parameters
$$N_{j}(X^{+m}) = \frac{N_{j}(X^{+m})}{N(X^{+m})} \frac{N(X^{+m})}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_{e}} N_{e}$$

Hydrogen-electron ratio

Determined by H, He ionization

The final line flux

Define new quantities:

$$G(N_e,T_e) = \frac{N_j(X^{+m})}{N(X^{+m})} \frac{N(X^{+m})}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_e} \frac{A_{ji}}{N_e} hv_{ji}$$

Contribution Function

 G(T_e,N_e) describes atomic physics (can calculate it beforehand with CHIANTI)
 DEM describes plasma properties
 LOS integration is now over temperature

I - Line intensity ratios

Most popular technique Fast and easy!

$$R = \frac{F_1}{F_2} = \frac{\int_0^{\infty} G_1(T_e, N_e)\varphi(T)dT}{\int_0^{\infty} G_2(T_e, N_e)\varphi(T)dT} \sim \frac{G_1(T_e, N_e)}{G_2(T_e, N_e)}$$
$$R_{same} \sim \frac{\left[\frac{N_i(X^{+m})}{N(X^{+m})}\right]}{\left[\frac{N_j(X^{+m})}{N(X^{+m})}\right]}$$

Lines from the same ion:

Lines from different ions of the same element:

Lines from different elements:

$$R_{diff} \sim R_{same} \frac{\left[\frac{N(X^{+m})}{N(X)}\right]}{\left[\frac{N(X^{+n})}{N(X)}\right]}$$

$$R \sim R_{diff} \frac{N(X_1)}{N(X_2)}$$

I - Line intensity ratios - same ion

Lines from the same ion - pros:

- Ratio can be used for temperature and density diagnostics, or both
- Ratio is independent of ion and element abundances
- Often there are many lines to choose from

I - Line intensity ratios - different ions

Lines from different ions

Pros:

- Consecutive ions provide excellent T diagnostics
- Element abundance is not a problem

Cons:

- Add ionization/recombination rate uncertainties
- They might be emitted by different plasmas

I - Line intensity ratios - different elements

Pros:

- Study relative abundances, FIP effect

Cons:

- Need to know plasma T, Ne beforehand
- Need ions formed at the same temperature

II - Thermal structure diagnostics

Isothermal plasma:

$$\begin{cases} F = \frac{1}{4\pi d^2} \int G(N_e, T_e) N_e^2 \, dV \\ EM = N_e^2 V \\ \rightarrow F = \frac{G(N_e, T_e^{pl})}{4\pi d^2} EM \end{cases}$$

Can determine the EM (maybe N_e) and T_e from density-insensitive lines of different ions:

$$EM(T_e) = 4\pi d^2 \frac{F}{G(N_e, T_e)} = EM \frac{G(N_e, T_e^{pl})}{G(N_e, T_e)}$$

II - Thermal structure diagnostics

Multithermal plasma:

$$F = \frac{1}{4\pi d^2} \int G(N_e, T_e) \varphi(T_e) dT$$

Need to determine $\varphi(T_e)$

Three main methods:

- Iterative techniques Inversion techniques Monte Carlo techniques
- Two main problems:
 - Non-unique solution Need lines from many ions

(Hahn et al. 2011)

III - Line width diagnostics

Line profile - key facts:

$$FWHM = \frac{V_{ji}}{c} \sqrt{4 \ln 2 \left(\frac{2k_B T_{ion}}{M_{ion}} + V_{nth}^2\right)}$$

Thermal motions (ion temperature)

Problem: You have two unknowns in one observable Non-thermal motions

Rotation Oscillations Turbulence Explosive motions

III - Line width diagnostics

These assumptions are not always justified

IV - Ion temperature

Dealing with FWHM:

$$FWHM = \frac{\lambda_{ji}}{c} \sqrt{4 \ln 2 \left(\frac{2k_B T_{ion}}{M} + v_{nth}^2\right)}$$

3 - If you consider many lines (Tu et al. 1998)

Step 1: Simply determine upper limits to Tion and Vnth

$$T_{ion} < T_{ion}^{\max}$$
 $v_{nth} < v_{nth}^{\max}$

Step 2: Assume v_{nth} is the same for all

Determine maximum vnth value among all lines

$$\mathbf{v}_{nth} < \min(\mathbf{v}_{nth}^{\max}) = \mathbf{v}_{\min} \longrightarrow T_{ion} > T_{ion}(\mathbf{v}_{\min})$$

Determine T_{ion} range

IV - Ion temperature

Off disk streamer

Off disk coronal hole

V - Solar wind speed

Increasing wind speed changes O VI 1031/1037 ratio

Intensity ratio is constant

Resonant scattering depends on C II lines

Doppler shifts favor the weaker O VI line

