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Kink oscillations of coronal loops:
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Perhaps, longest EM waves 
resolved in time and space!
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MHD seismology – MHD-wave-based 
diagnostics of a natural plasma environment

• One of the dedicated aims of SDO/AIA.

• One of the science objectives of future ESA Proba
3/ASPIICS, NASA/KASI ISS/COR, and NASA HI-C.

• One of the key methods proposed to be developed in the 
report “Understanding space weather to shield society: A 
global road map for 2015–2025 commissioned by 
COSPAR and ILWS” (Schrijver et al. 2015).

• c.f.: magneto(spheric)-seismology; MHD spectroscopy.

• This talk: mainly observational aspect.
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Dispersion relations of MHD modes of 
a magnetic flux tube:

Magnetohydrodynamic (MHD) 
equations à

Equilibrium à

Linearisation à

Boundary conditions

“Standard theory”: interaction of MHD waves with 
plasma structures (Zaitsev & Stepanov, 1975;                         
B. Roberts and colleagues, 1981-1986)
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Sound speed:    CS ∝ T ,   - gradient of gas pressure

Alfv ′e n speed:  CA ∝ B / ρ ,   - magnetic tension, 

Fast speed:

CF = CA
2 + CS

2 - gradient of (magnetic pressure + gas pressure)

Tube speed:

CT =
CSCA

CA
2 + CS

2

Kink speed: CK =
ρ0CA0

2 + ρeCAe
2

ρ0 + ρe

⎛

⎝⎜
⎞

⎠⎟

1/ 2

 ; in low-β :  CK = CA0

2
1+ ρe / ρ0

Characteristic speeds:
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Depending on the azimuthal wave number m: 

Kink (m=1) mode
(linear polarization)

RHS or LHS 
circular 
polarisation
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Kink modes are guided fast waves:

This mode is essentially compressive, and must not 
be confused with the Alfvén (torsional) wave

(while, sometimes it is called “Alfvénic”)
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Damping: linear coupling with Alfvén waves --
effect of resonant absorption of kink waves

If the Alfven speed is 
nonuniform in the 
radial direction, CA(r),

In the loop there are 
regions where the 
kink motions are in 
resonance with the 
local torsional 
(Alfven) 
perturbations. 

Ck=CA(r)
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Mathematically, it corresponds to the appearance of the 
singularity in the governing equations:

Why is it always about 3-5??
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Kink oscillations with SDO/AIA:
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• Oscillation       
period,

• Decay time

How we analyse it:
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Seismological estimation of the magnetic field:

• One of the specific aims of SDO/AIA
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A possible mechanism: mechanical displacement of the loop 
by LCE from the equilibrium
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Exception: “Harmonica” event
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Statistics of decaying kink oscillations
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Goddard et al., A&A 585, A137, 2016

Kink mode: Pkink ≈ 2L /CK

Final demonstration that kink oscillations are natural 
standing modes of loops 
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• Oscillation       
period,

• Decay timeξ(t) = A0 exp − t
tD

⎛
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cos 2π

P
t +φ0
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⎞
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Mechanism for damping
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Decay time vs Period:

More statistics 
is needed

τ ∝ P
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τ ∝ P - Consistent with resonant absorption
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Terradas et al. ApJ 
687, L115, 2008

density

vorticity

Kelvin –
Helmholtz 
Instability?

More work needs to be done.
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New regime: 
decayless

Wang et al. ApJ 751, L27, 2012 
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An oscillatory pattern occurs before the onset of the main oscillation:
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Anfinogentov et al., Astron. Astrophys. 583, A136, 2015

Decayless regime of kink oscillations:
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Seismology of a “quiet” active region by decayless
oscillations
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How can we have a decayless monochromatic oscillation 
of a damped oscillator?

Can f(t) be periodic? (E.g., leakage of p-modes, 
chromospheric 3-min oscillations)
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No signatures 
of resonance

Demonstration that the decayless kink oscillations are 
not excited by the leakage of p-modes and 3-min 
oscillations. 
N

ak
ar

ia
ko

v 
et

 a
., 

A&
A 

59
1,

 
L5

, 2
01

6 



Centre for Fusion, Space & Astrophysics

No signatures 
of resonance
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Thus, f(t) cannot be periodic: 
no signature of resonance.

à We exclude the illusive leakage of 
p-modes or 3-min oscillations as a 

driver of decayless kink oscillations
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How can we have a decayless monochromatic oscillation 
of a damped oscillator?

Could the driver f(t) be random, f(t)=R(t)?
(E.g. granulation motions)
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Response of an oscillator to random driving

The phase is not stable, 
does not match 
observations
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Undamped kink oscillations can be self-oscillations:

In contrast with driven oscillations, a self-oscillator itself 
sets the frequency and phase with which it is driven, 
keeping the frequency and phase for a number of 
periods.
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An example of a self-oscillatory system: violine
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In a self-sustained oscillator (self-oscillator), the driving 
force is controlled by the oscillation itself 
so that it acts in phase with the velocity, causing a 
negative damping that feeds energy into the vibration: 

no external rate needs to be adjusted to the resonant 
frequency.

Examples:
• Heart,
• Clocks,
• Bowed and wind musical instruments,
• Devices that convert DC in AC.
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Rayleigh 
Eq.:
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Sketch of our model of undamped kink 
oscillations of loops:

Loops 

Quasi-steady flows 
(supergranulation?)
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Random 
driver is able 
to sustain 
decayless
oscillatory 
patterns too…

In this case, the period 
is determined by the 
loop, not by the driver.

So, randomly-driven 
oscillations or self-
oscillations?

A
pex
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Conclusions
• Appearance of large-amplitude rapidly-damped 

kink oscillations is associated with low coronal 
eruptions (LCE).

• Possible excitation mechanism is the mechanical 
displacement of the loop from the equilibrium by 
the LCE (observed in 86% cases).

• Some cases are clearly inconsistent with this 
mechanism.

• Evidence of nonlinear damping: the quality-factor 
depends on the oscillation amplitude.

V.Nakariakov@warwick.ac.uk
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Conclusions - 2
• There is another, decayless and low-amplitude 

regime of the oscillations.
• The period also depends on the loop length.
• Seismology during quiet periods.
• The amplitude does not depend on period.
• What is the nature of decayless oscillations? 

Self-oscillations or random driver? (In both 
scenarios the energy comes from long-period 
surface motions). 

V.Nakariakov@warwick.ac.uk


