Статистика рентгеновских вспышек на Солнце. Синтетический обзор состояния проблемы. Какие пробелы могут быть заполнены данными КВ?

Александра Лысенко

Основные способы регистрации ионизирующего излучения (ИИ).

Нельзя выделить способ, который регистрировал бы исключительно рентгеновское и гамма-излучение.

• Газовые ионизационные детекторы.

Конденсатор, заполненный газом. При попадании ИИ возникает ионизация газа, вследствие возникает электрический ток. GOES X-ray Sensors.

• Твердотельные полупроводниковые детекторы.

Полупроводник с p — n переходом, к которому приложено внешнее напряжение. При попадании ИИ возникают пары электрон-дырка, вследствие возникает электрический ток. RHESSI.

• Сцинтилляционные детекторы.

Сцинтиллятор — вещество со спектром излучения, сдвинутым относительно спектра поглощения. При попадании ИИ возникают фотоны (видимый, УФ), которые попадают на фотоэлектронный умножитель (ФЭУ), вследствие возникает электрический ток. Konus-Wind, Fermi GBM.

• Трековые детекторы.

Камера Вильсона. В камере с пересыщенным газом центрами конденсации являются ионы, образованные при прохождении ИИ. Т о частица ИИ рисует свой трек.

Обзор основных миссий по исследованию Солнца в рентгеновском и гамма-диапазоне

- 1. Pioneer
- 2. SkyLab 1973 1979
- 3. GOES 1975.
- 4. Einstein the First Imaging X-Ray Observatory 1978
- 5. Solar Maximum Mission (SMM) 1980-1989. HXBS спектры в 15 каналах в диапазоне 20 260 кэВ. GRS спектры в диапазоне 0.01 100 МэВ в 476 каналах
- 6. Hinotori 1981- 1991
- 7. Yohkoh 1991-2005
- Compton Gamma Ray Observatory 1991-2000. BATSE 20 кэВ — 8 МэВ.
- 9. RHESSI launch 2002

Статистические распределения рентгеновских событий на Солнце, полученные из наблюдений SMM.

- Периодичность в HXR активность Солнца в 158 дней Dennis (1985).
- Распределения длительностей (Crosby, Aschwanden, Dennis 1993). Длительности считались по превышению уровня фона в HXRBS, неточности связаны с тем, что SMM находился на «дневной» части орбиты около часа, далее — 35 минут «ночной» стороны.
- Распределение пиковой скорости счета в HXRBS Dennis (1985).
- Распределение HXRBS vs. Power law spectral index.
 Заполненные квадраты и ромбы события с наличием гаммалиний в GRS.

Типы солнечных вспышек, предложенные Tanaka (1983) и Dennis (1985).

Tanaka (1983) Hinotori, Dennis (1985) SMM

• <u>Тип А</u>

Горячие тепловые вспышки (T~5—7*10⁷ K), компактные, на низкой высоте. Рентгеновское излучение — тормозное излучение тепловых электронов в плазме (thermal bremsstrahlung)

• <u>Тип В</u>

Петли с длиной > 2*10⁴ км, рентген — тормозное излучение пучка электронов на толстой мишени. Эволюция рентгеновского спектра мягкий-жесткий-мягкий. Характеризуются компактными петлями.

• <u>Тип С</u>

Большая высота (~5*104 км), медленно изменяющиеся потоки рентгеновского и микроволнового излучения. Эволюция рентгеновского спектра мягкий-жесткий-еще жестче. Характеризуются сложной, взаимопроникающей системой петель.

Солнечные вспышки класса А из наблюдений Hinotori.

Tanaka (1983)

- Не демонстрирует резких скачков во временных профилях < 50 кэВ.
- Событие короткоживущее, но очень интенсивное.
- Рентгеновское излучение в диапазоне 17 — 40 кэВ соответствует излучению плазмы, нагретой до ~ 30 МК.
- Излучения в HXR мало.

Свойства солнечных вспышек класса В из наблюдений SMM.

Dennis (1985)

- Эволюция спектра мягкий-жесткий-мягкий.
- Временные масштабы пика в жестком рентгене FWHM ~ 20 сек.
- Одновременное испускание УФ и рентгена.
- HXR тормозное излучение ускоренных электронов на плазме у основания петли.
- SXR тормозное излучение тепловых электронов. Плазма нагревается в результате рассеяния энергии пучка нетепловых электронов.

Свойства солнечных вспышек класса С из наблюдений SMM.

Dennis (1985), Cliver et al.(1985)

- Вспышка в HXR более плавная FWHM ~ 10 минут.
- Эволюция спектра мягкий-жесткий-еще жестче.
- Источник рентгеновского и микроволнового излучения 4*10⁴ км над фотосферой.
- В большинстве случаев сопровождаются корональными выбросами массы (Coronal Mass Ejection CME)
- Соответствующее событие в микроволнах так же постепенно и имеет пик часто позже, чем пик в рентгене.
- Богаты микроволнами, низкие пиковые частоты микроволновых спектров, т о низкие плотности и низкие магнитные поля в области излучения.
- Связаны с длительными SXR событиями.

Происхождение вспышек класса С.

Cliver et al.(1985) Такие события — результат ускорения частиц при магнитном пересоединении. В месте пересоединения электроны ускоряются, движущиеся наверх порождают радио излучение, движущиеся вниз захватываются в ловушки в петлях и порождают HXR и микроволновое излучение.

Типы солнечных вспышек, предложенные Bai & Sturrock (1989)

- Тепловые жесткие рентгеновские вспышки. (тип А у Денниса)
- Нетепловые жесткие рентгеновские вспышки. (тип В у Денниса)
- Импульсные вспышки с гамма-излучением и выбросом протонов (impulsive GR/P flares)
- Постепенные вспышки с гамма-излучением и выбросом протонов (gradual GR/P flares)
- Вспышки, связанные с выбросом волокна.

Солнечные вспышки с гамма-излучением и выбросом протонов (GR/P flares).

Свидетельством того, что во вспышке происходит ускорение частиц до высоких энергий (~ нескольких МэВ/нуклон) является наблюдение гамма-линий и межпланетных энергичных частиц. Т о выделен класс GR/P вспышек.

- Показатель степени спектра < 4.5
- Существует корреляция между потоками электронов с энергией >270 кэВ и наличием гаммаизлучения на 4 — 7 МэВ. Можно сделать вывод, что электроны и протоны ускоряются похожими механизмами.
- Задержки HXR относительно SXR.

Импульсные вспышки с гамма-излучением и выбросом протонов

Bai (1986), Bai & Sturrock (1989)

- Временные масштабы в рентгеновском излучении ~ 2 минут.
- Преобладает излучение в гамма-диапазоне над выбросом межпланетных протонов.

Постепенные вспышки с гамма-излучением и выбросом протонов (gradual GRP flares).

Bai (1986), Bai & Sturrock (1989)

- Временные масштабы 12-45 минут
- Богаты микроволнами по сравнению с импульсными GRP (в 10-100 раз).
- Преобладает выброс протонов над гаммаизлучением.

Вспышки, связанные с выбросом волокна.

Появляются в результате выброса волокна.

- Излучение в Нα.
- Постепенное излучение в микроволнах.
- Излучение в мягком рентгене.
- Нет жесткого рентгена.

Статистические распределения рентгеновских событий на Солнце, полученные из наблюдений SMM, BATSE-CGRO, RHESSI.

- Усредненное по месяцам количество вспышек на протяжении 3х солнечных циклов, детектированных HXRBS, BATSE, RHESSI (Aschwanden 2011).
- Корреляция потока SXR (1-8 А канал GOES) vs. HXR CGRO-BATSE (Veronig 2002). Для слабых вспышек GOES корреляции не наблюдается.

Статистические распределения рентгеновских событий на Солнце, полученные из наблюдений SMM, BATSE-CGRO, RHESSI.

- Сравнение распределений длительностей и пиковых скоростей счета, полученных HXRBS/SMM, BATSE/CGRO, RHESSI.
- С вычитанием фона.
- При оценке длительности событий BATSE/CGRO и RHESSI не анализировались эффекты от пребывания аппарата на «ночной» стороне, таким образом, одна и та же вспышка при выходе аппарата на «дневную» сторону могла учитываться дважды и трижды.

Очень жесткие вспышки, наблюдавшиеся Fermi LAT

Ackermann et al. (2014)

- События с августа 2008 до августа 2012 (фактически, с 2010 — начала солнечного максимума).
- Выбраны события, для которых излучение от вспышки в LAT следовало за излучением в HXR.
- На графике максимальные значения потока из измеренных за разные обороты спутника, наблюдавшиеся для события в диапазоне 100 МэВ — 10 ГэВ.
- Наблюдаем одно событие с аномально большим (>400 10⁻⁹ erg/cm²s⁾ потоком в Fermi LAT — 7 марта 2012.
- Одно событие С-класса GOES (при этом почему-то не наблюдалось Конусом-Виндом даже в фоне).

Супер-горячие вспышки, наблюдавшиеся RHESSI.

Kaspi, Krucker & Lin (2014)

- Выбраны вспышки М и X классов GOES.
- Для спектров в диапазоне 3 100 кэВ было проведено фитирование в OSPEX моделями isothermal bremss + powerlaw + линии излучения Fe и Fe+Ni
- Вывод: существуют вспышки (супергорячие), для которых температура из данныз GOES может быть недооценена.
- Такой класс вспышек может ассоциироваться с сильными магнитными полями в короне (~ 100 G), и более высокими концентрациями тепловых электронов по сравнению с другими вспышками.

Актуальные проблемы. Fletcher et al. (2011)

- Где именно запасена энергия, выделяющаяся во вспышке? Ответ на этот вопрос — в конфигурации магнитного поля в фотосфере, которое не доступно наблюдениям. Моделирование?
- Как стабильная конфигурация поля переходит в нестабильную? При каких условиях происходит магнитное пересоединение? Это объясняется микросостоянием плазмы или МГД состоянием плазмы?
- Как происходит превращение энергии, запасенной в солнечной вспышке? Магнитное пересоединение само по себе не способствует выделению энергии, но приводит к процессам, которые способствуют.
- Что является причиной, а что следствием вспышка или корональный выброс массы?

Какие пробелы могут быть заполнены данными КВ?

- Отсутствие «ночи». Наблюдение Солнца ~ 95 % времени.
- Стабильный фон.
- Однородная база данных о солнечных вспышках за 21 год (на данный момент).
- Большая (по сравнению с RHESSI) эффективная площадь регистрации рентгеновских и гамма-квантов.

Спасибо за внимание