Non-parametric statistical techniques for the truncated data sample: Lynden-Bell's C⁻ – method and Efron-Petrosian approach

Anastasia Tsvetkova on behalf of the Konus-Wind team Ioffe Institute

Contents

- Parametric vs non-parametric techniques
- Konus-*Wind* experiment
- The burst sample
- The sample analysis
- Selection effects
- GRB detection horizon
- Non-parametric statistical techniques for a truncated data sample
- Luminosity (energy release) evolution
- GRB luminosity and energy release functions
- GRB formation rate
- Summary

Parametric vs non-parametric techniques

	Parametric	Non-parametric ("distribution-free")	
Assumed distribution	Predictable (and often Normal)	Any	
Assumed variance	Homogeneous	Any	
Typical data	Ratio or Interval	Ordinal or Nominal	
Data set relationships	Independent	Any	
Usual central measure	Mean	Median	
Benefits	Can draw more conclusions	Simplicity; Less affected by outliers	

Parametric vs non-parametric techniques

Tests	Parametric	Non-parametric	
Correlation test	Pearson	Spearman	
One group (comparison with specified theoretical distribution)	Z-test, t-test	Kolmogorov-Smirnov 1-sample test, Runs test	
Independent measures, 2 groups	Independent-measures Student t-test	Kolmogorov-Smirnov 2-sample test, Mann-Whitney test	
Independent measures, >2 groups	One-way, independent- measures ANOVA	Kruskal-Wallis test	
Repeated measures, 2 conditions	Matched-pair t-test	Wilcoxon test	
Repeated measures, >2 conditions	One-way, repeated measures ANOVA	Friedman's test	

Parametric vs non-parametric techniques

Parametric technique: forward-fitting (FF) method

The LF form is predefined ⇒ The LF is convolved with the observational biases ⇒

 \Rightarrow Fitting this function to the observed L_{iso} distribution \Rightarrow LF parameters

Non-parametric statistical techniques are applicable to cosmological evolutions of **quasars** (Maloney & Petrosian 1999; Singal et al. 2011, 2013), **GRBs** (Lloyd-Ronning et al. 2002; Kocevski & Liang 2006; Dainotti et al. 2013), and **AGNs (blazars)** (Singal et al. 2012, Singal et al. 2014).

Joint Russian-US Konus-Wind experiment

- Two detectors (S1 and S2) are located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres;
- ~100-160 cm² effective area;
- Now around L1 at ~7 light seconds from Earth;
- Light curves (LC): ~20 1500 keV ;
- Waiting mode: LS res. is 2.944 s;
- Triggered mode: LC res. is 2 ms –256 ms, from T₀-0.512 s to T₀+230 s 128-ch spectra (20 keV – 20 MeV).

Advantages

- Wide energy band: ~20 keV–20 MeV;
- Exceptionally stable background;
- The orbit of s/c excepts interferences from radiation belts and the Earth shadowing;
- Continuous observations of all sky;
- Duty circle 95%;
- Observes almost all bright events (>10⁻⁶erg cm⁻² s⁻¹).

The burst sample

- 150 GRBs (1997 Feb to 2016 Jun)
- 12 Type I (the merger-origin, typically short/hard) GRBs
- <u>138 Type II (the collapsar-origin, typically long/soft) GRBs</u>
- 32 GRBs have reasonably-constrained (from optical/IR afterglow or in two spectral band simultaneously) jet breaks times

Analysis

- The observer-frame energetics range: 10 keV 10 MeV;
- Durations $(T_{100}, T_{90}, T_{50})$ were calculated in 75 keV 1 MeV range;
- The spectral lags were estimated;
- Spectral analysis: time-integrated and peak spectra, CPL and Band models;
- Best fit model: $\chi^2_{CPL}-\chi^2_{Band}>6 =>$ the Band function;
- Based on the GRB redshifts, which span the range $0.1 \le z \le 5$, the rest-frame, isotropic-equivalent energies (E_{iso}) and peak luminosities (L_{iso}) were estimated;
- L_{iso} were calculated on the (1+z)64 ms time scale, which partially removes the observational bias;
- For 32 GRBs with reasonably-constrained jet breaks the collimation-corrected values of the energetics are provided.

Selection effects

Dependence of the limiting KW energy flux on E_p

Trigger threshold: 9σ Solid line: CPL (α = -1) Dashed line: Band (α = -1, β = -2.5) Incident angles: 60°

Band (2003)

Selection effects

 $S_{lim} \sim 3 \times 10^{-6} \text{ erg cm}^{-2}$

F_{lim} ~ 1×10⁻⁶ erg cm⁻² s⁻¹

GRB detection horizon

$$\operatorname{PCR}_{z}(\Delta T_{\operatorname{trig}}) = a \times \operatorname{PCR}_{z0}(a \cdot \Delta T_{\operatorname{trig}}) \times \frac{N_{\operatorname{G2}}(\alpha, \beta, a \cdot E_{\operatorname{p,p}})}{N_{\operatorname{G2}}(\alpha, \beta, E_{\operatorname{p,p}})} \times \left(\frac{D_{\operatorname{M}}(z_{0})}{D_{\operatorname{M}}(z)}\right)^{2}$$

Trigger threshold: 9σ

Trigger time scales ΔT_{trig} : 140 ms or 1 s,

 $a = (1+z_0)/(1+z),$

 $PCR_{z0}(a\Delta T_{trig})$ is reached in the observed G2 light curve on the modified time scale $N_{G2}(\alpha,\beta,E_{pp})$ is the best spectral model count flux in G2 calculated using the DRM, $N_{G2}(\alpha,\beta,aE_{pp})$ is the corresponding flux in the redshifted spectrum

Non-parametric statistical techniques for a truncated data sample

$$\ln \psi(L'_i) = \sum_{j=2}^{i} \ln \left(1 + \frac{1}{N'_j}\right)$$
$$\ln \psi(z_i) = \sum_{j=2}^{i} \ln \left(1 + \frac{1}{M_j}\right)$$

Associated sets:

$$\begin{array}{ll} \textit{\textit{M}}_{\textit{i}}: \ J_{i}' = \{j | z_{j} < z_{i}, L_{j} > L_{\lim,i}, L_{i} > L_{\lim,j}\} & \textit{\textit{N}}_{\textit{i}}: \\ \\ L_{j} > L_{i}^{\lim} \Leftrightarrow z_{j}^{\lim} > z_{i} & . \end{array}$$

Luminosity (energy release) evolution

$$\tau = \frac{\sum_i (R_i - E_i)}{\sqrt{\sum_i V_i}}$$
$$E_i = (N_i + 1)/2$$
$$V_i = (N_i^2 - 1)/12$$

 $\begin{array}{l} \mbox{Luminosity evolution}\\ g(z) = (1+z)^{\delta} \end{array}$

Local (non-evolving) luminosity

$$L' = L/g(z)$$

Local LF (in the commoving frame)

 $\psi(L')(1+z)^{\delta_{\mathrm{L}}}$

$$L_{iso}: \tau_0 = 1.7 \quad \delta_L = 1.7^{+0.9}_{-0.9} \ (1\sigma \ \text{CL})$$
$$E_{iso}: \tau_0 = 1.6 \quad \delta_E = 1.1^{+1.5}_{-0.7}$$

Red filled circles : per-burst truncation flux F_{lim} ; red open circles: monolithic $F_{lim} = 2 \times 10^{-6}$ erg cm⁻² s⁻¹; green squares: $S_{lim} = 4.3 \times 10^{-6}$ erg cm⁻².

Luminosity (energy release) evolution

Examples of evolving astrophysical objects:

- Galaxies: the local luminosity function varies for early- and late-type galaxies (Marzke et al. 1994)
- Quasars: L~(1+z)³, z<1.5 (Boyle 1993; Hewett, Foltz, & Chaffee 1993); L~(1+z)^{1.5}, z<3 (Hewett et al. 1993)

Lynden-Bell (1971) Efron & Petrosian (1992)

Selection effects and luminosity (energy release) evolution

- The cosmic background temperature was higher;
- The metallicity was lower, which implies lower cooling rates and therefore higher temperatures on average;
- The heating rates were probably higher in the past because the SFR per unit volume was higher, leading to more intense radiation fields at high redshifts.

The present-time GRB luminosity and energy release functions

Left panel: LF (red stepped graph) and EF (green stepped graph) estimated under the assumption of no evolution of L_{iso} and E_{iso} with z; the solid and dashed lines show the best BPL and CPL fits, respectively. Right panel: present-time LF and EF estimated accounting for the luminosity and energy evolutions.

The present-time GRB luminosity and energy release functions

1

CPL:

$$\psi(x) \propto \begin{cases} x^{\alpha_1}, & x \le x_b \\ x_b^{(\alpha_1 - \alpha_2)} x^{\alpha_2}, & x > x_b \end{cases}$$

 $\psi(x) \propto x^{\alpha} \exp(-x/x_{\rm cut})$

 α_1 , α_2 – PL indices at the dim and bright distribution segments, x_b – breakpoint of the distribution.

 α – PL index, x_{cut} – cutoff luminosity (or energy).

Data	Evolution (PL index)	Model	χ^2 (d.o.f.)	$lpha_1$	$lpha_2$	$\log x_b \\ (\log x_{\rm cut})$
$\psi(L')$	$\delta_L = 1.7$	BPL	2.05(133)	-0.47 ± 0.06	-1.05 ± 0.11	0.27 ± 0.12
$\psi(L')$	$\delta_L = 1.7$	CPL	18.5(134)	-0.60 ± 0.04		2.10 ± 0.15
$\psi(E')$	$\delta_E = 1.1$	BPL	19.2(126)	-0.36 ± 0.01	-1.28 ± 0.11	1.30 ± 0.04
$\psi(E')$	$\delta_E = 1.1$	CPL	12.7(127)	-0.31 ± 0.02		2.09 ± 0.04
$\psi(L_{\rm iso})$	no evolution	BPL	2.32(133)	-0.47 ± 0.06	-1.00 ± 0.10	0.96 ± 0.15
$\psi(L_{\rm iso})$	no evolution	CPL	8.90(134)	-0.54 ± 0.04		2.58 ± 0.11
$\psi(E_{\rm iso})$	no evolution	BPL	17.2(126)	-0.35 ± 0.01	-1.29 ± 0.12	1.80 ± 0.05
$\psi(E_{\rm iso})$	no evolution	CPL	15.4(127)	-0.32 ± 0.01		2.63 ± 0.04

GRB formation rate evolution

Cumulative rate evolution:

$$\ln \psi(z_i) = \sum_{j=2}^{i} \ln \left(1 + \frac{1}{M_j}\right)$$

Comoving density rate: $\rho(z) = \frac{d\psi}{dz}(1+z) \left(\frac{dV(z)}{dz}\right)^{-1}$

Differential comoving volume: $\frac{dV(z)}{dz} = \frac{4\pi D_{\rm H} D_{\rm M}^2}{E(z)}$

 D_M is the transverse comoving distance Hubble distance: $D_H = c/H_0$ Normalized Hubble parameter: $E(z) = \sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}$

SFR: Hopkins (2004), Bouwens et al. (2011), Hanish et al. (2006), Thompson et al. (2006), Li (2008).

Red open circles: no luminosity evolution; red filled circles: $\delta_L = 1.7$; green open squares: no energy evolution; green filled squares: $\delta_L = 1.1$.

Summary

- A systematic study of 150 GRBs (from 1997 February to 2016 June) with known redshifts was performed;
- The influence of instrumental selection effects on the GRB parameter distributions was analyzed: the regions above the limits, corresponding to the bolometric fluence
- $S_{lim} \sim 3 \times 10^{\text{-6}} \text{ erg cm}^{\text{-2}}$ (in the E_{iso} z plane) and bolometric peak energy flux

 $F_{lim} \sim 1 \times 10^{-6}$ erg cm⁻² s⁻¹ (in the L_{iso} – z plane) may be considered free from the selection biases;

- KW GRB detection horizon extends to z_{max} ~ 16.6, stressing the importance of GRBs as probes of the early Universe;
- The GRB luminosity evolution, luminosity and energy release functions, and the evolution of the GRB formation rate were estimated accounting for the instrumental bias:
 - □ The derived luminosity evolution and isotropic energy evolution indices $\delta_L \sim 1.7$ and $\delta_E \sim 1.1$ are more shallow than those reported in previous studies, albeit within errors;
 - □ The shape of the derived LF is best described by the broken PL function with low- and high-luminosity slopes ~ -0.5 and ~ -1 , respectively;
 - The EF is better described by the exponentially-cutoff PL with the PL index ~ -0.3 and a cutoff isotropic energy of $\sim (2 4) \times 10^{54}$ erg;
 - □ The derived GRBFR features an excess over the SFR at z < 1;
- GRBs were more luminous in the past than today.

Thank you!