Photospheric and chromospheric magnetic field changes during solar flares

Lucia Kleint

Leibniz-Institute for Solar Physics (KIS), Germany

A Simple Picture of Flares

Leibniz-Institut für Sonnenphysik (KIS)

An Open Question in Flare Physics

How does the magnetic field structure change during flares?

-> one of the flare energy dissipation mechanisms.

Goal: study changes in the photosphere and in the chromosphere. Compare to NLFFF models => free energy.

Kleint, ApJ 834, 26, 2017 Kleint et al., ApJ 865, 146, 2018

Running difference movie of a flare

Global influence of flares.

movie by LMSAL

October 2019

Standard Flare Model and Energy Dissipation

Total energy of a large flare: 10^{32} erg (comparison: Hiroshima 8*10²⁰ erg)

Magnetic Field Changes

Photospheric B has been found to change during strong flares and penumbra has been seen to disappear.

• e.g. Kosovichev & Zharkova 1999, Wang et al 1994, Sudol & Harvey 2005 : 15 X-flares, median 90 G change.

For chromospheric B changes, there is only 1 flare measurement: X1 flare on 2014-03-29

bright flash: continuum ("white light") emission

Chromospheric Flare Measurements

B can be measured off-limb and on-disk

Very few chromospheric observations during flares.

Kuridze et al., ApJ, 2018

Magnetic Field Changes: 2014-03-29 X1 flare

(leint, October 2019

Introduction – Observed Changes of B – NLFFF Modeling – Summary

Magnetic Field Changes

PHOTOSPHERE (HMI, IBIS)

analyze evolution of B_{LOS}

Photospheric Magnetic Field Changes

Method: Fit B_{LOS}(t) with a stepwise function

$$B(t) = a + bt + c \left\{ 1 + \frac{2}{\pi} \tan^{-1}[n(t - t_0)] \right\}$$

Sudol & Harvey, 2010

Leibniz-Institut für

Sonnenphysik (KIS)

Magnetic Field Changes during the X1 flare on 2014-03-29

Evolution of B_{LOS} on 2014-03-29 (X1 flare at 17:45)

Looking for sudden changes, not solar evolution / flux emergence.

B pixel [138,144] -300 Pore: ~300 G change ∿∿∿∿∿♦ -400 E -500 B [Gauss] -600 Flare start -700 -chânâr -800 17:55 17:30 17:35 17:40 17:45 17:50 Start Time (29-Mar-14 17:29:01) B pixel [103,132] 1000 $\diamond \diamond \diamond \diamond$ °⊘ 800 600 Possibly failures of B [Gauss] HMI's B-determination \diamond 400 due to flare-Stokes I \diamond $^{|}$ \diamond 200 B-change: -387.7 => closer to -200 G 17:30 17:35 17:40 17:45 17:50 17:55 Leibniz-Institut für

11

Start Time (29-Mar-14 17:29:01)

Sonnenphysik (KIS)

Photospheric Magnetic Field Changes

Photospheric Magnetic Field Changes

Colored pixels = magnetic field changed permanently

Introduction – Observed Changes of B – NLFFF Modeling – Summary

Chromospheric Magnetic Field Changes

CHROMOSPHERE (IBIS)

more complicated to get B_{LOS} => used weak-field approximation

Chromospheric Flare Observation

- Speckle-reconstructed Ca II 8542 images (80" x 40") from IBIS.

- more complicated to get B_{LOS} than for HMI => used weak-field approx.

Chromospheric Magnetic Field Changes

Ca 8542 Å, WFA magn., 2014-03-29T17:15:03.32 B [Mx cm⁻² Compare Stokes V to the 290 1500 1000 Y (arcsecs) derivative of the intensity. 500 280 0 270 -500 -1000 -1500 260 $V(\lambda) = -\Delta\lambda_H \cos\theta \frac{dI(\lambda)}{d\lambda}$ 500 520 540 560 X (arcsecs) 1.0 (normalized) 0.8 0.6 0.4 0.2 0.0 proportional to B 0.04 $\frac{(-dI/d\lambda \cdot \Delta\lambda_{H})/I}{(full)}$ 0.02 5 0.00 -0.02 B_{WFA-full} = 539.8 Mx cm $= 615.3 \text{ Mx cm}^{-1}$ B_{WFA-blue} -0.04 8540 8541 8542 8543 8544 wavelength [Å]

Chromospheric Magnetic Field Changes

change: >500 G!

Chromospheric Magnetic Field Changes

- Changes occur in coherent areas
- Chromospheric changes are stronger than photospheric changes (640 G vs. 320 G)

Comparison of photosphere and chromosphere

Comparison of photosphere and chromosphere

Leibniz-Institut für Sonnenphysik (KIS)

Introduction – Observed Changes of B – NLFFF Modeling – Summary

htinuum emission: context

X-rays (from e⁻ stopped in chromosphere) generally agree with WL emission

If magnetic field changes also agree spatially, there may be a common mechanism.

Heinzel et al., ApJ, 2018

Leibniz-Institut für Sonnenphysik (KIS)

Overlap with X-rays?

Chromosphere

Modeling

Can NLFFF models reproduce the observed changes?

in collaboration with M. Wheatland, A. Mastrano, P. McCauley University of Sydney, Australia

- Obtain NLFFF model every 135 s (from HMI vector data)
- 2 solutions: P and N, but P is more realistic
- Fit the same arctan function to all NLFFF models to obtain magnetic field changes

Kleint et al., ApJ 865, 146, 2018

- Variation of magnetogram with height in NLFFF model.
- Use index 0 for photosphere, index 1 (h=725 km) for chromosphere

sphere missing in model.

Statistics

What about other flares?

(no chromospheric data yet...)

Castellanos Duran et al., ApJ 852, 25, 2018

Statistics: Occurrence

Statistics

- 75 flares analyzed, changes found in all >M1.6.
- Area of changes correlated to flare energy.
- Strong changes occur near the polarity inversion line.

Castellanos Duran et al, ApJ 852, 25, 2018

Statistics: Areas of photospheric B-changes

Statistics

- The (detected) B-change area depends on the flare strength.
- area corrected for foreshortening. No dependence on limb distance

Leibniz-Institut für Sonnenphysik (KIS) Castellanos Duran et al, ApJ 852, 25, 2018 30

Statistics: location of photospheric B-changes

Statistics

- The strongest B-changes occur near the polarity inversion line (exponential decay with distance)
- Example: 90% of changes > 250 G are within 9" of PIL.

Leibniz-Institut für Sonnenphysik (KIS) Castellanos Duran et al, ApJ 852, 25, 2018 31

Are B-changes related to white light emission?

Statistics

- WL & B-changes often overlap, but are not identical.
- In 64% of the cases the Bchange area is larger than the WL area.

Castellanos Duran et al, to be submitted, 2019

Outlook

We do not yet have statistics for chromospheric magnetic field changes.

-> GREGOR, DKIST

Summary: 2014-03-29 flare

