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Nonthermal particle acceleration in solar flares

Evidence
• HXR: nonthermal electrons
• γ-ray: nonthermal ions
• Impulsive SEP events

Photon energy spectrum
Lin 2011

HXR

γ-ray

Hurford et al., 06

Reames 99
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Possible particle acceleration sites

Shibata et al., 95

Most HXR and γ-ray emissions
come from the footpoints

Particle precipitation

Large-scale Alfvén waves in loops

Termination shock

Reconnection-driven turbulence

Reconnection
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Evidence for acceleration by reconnection

Microwave emissions filling up the reconnection region

Above-the-looptop
HXR emissions

Electron beams originated
from reconnection site

Chen et al., 20

Krucker & Battaglia 14 Chen et al., 18
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Similar acceleration mechanism for ions

HXR due to ≥ 0.3 MeV electrons
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Shih et al., 09
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Challenges in modeling particle acceleration
• The scale separation is enormous in flares.

1m 103m 104m 105 − 107m 108m
di Largest

PIC
MHD
Grid

Observation
Resolution

Flare

• 3D physics in reconnection is complicated.

PIC MHD
Daughton et al., 11 Huang et al., 16

• A larger number of particles are accelerated (Lin & Hudson 76, Krucker

et al., 10).
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Methods to model particle acceleration in flares

1m 103m 104m 105 − 107m 108m
di Largest

PIC
MHD
Grid

Observation
Resolution

Flare

Kinetic simulations
• Self-consistent
• Suitable for studying
acceleration mechanisms and
turbulence properties

• Small size

Test-particle + MHD
• Capture large-scale dynamics
• No wave-particle interaction
• No feedback
• Energy spectrum is too hard

Combine these two in a framework?

9 / 37



A framework for studying particle acceleration

Kinetic simulations
• Acceleration mechanisms
• Turbulence properties

MHD simulations
• Flare geometry
• B-field and plasma flows

Macroscopic energetic-particle model
Spatially and temporally dependent energetic
particle distributions

Emission modeling
Emission maps from different
viewing perspectives

Observations
HXR and microwave emissions
in different regions
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Fermi mechanism in reconnection

vA

v

v + 2vA

vA vA

vA vA

• One reflection off the reconnection
outflow

• Multiple reflections off the
reconnection outflow
◦ Contracting magnetic islands (e.g.,

Drake et al. 06)

◦ Merging magnetic islands (e.g., Oka et al.

10)

◦ Trapping near the X-line (e.g., Egedal et al.

15)

◦ Turbulence scattering (e.g., Li et al. 19)
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One electron trajectory from 2D PIC simulation
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Particle acceleration is associated with drift motions.
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Drift along electric field ⇒ energization

• In the guiding-center approximation,

⟨dε/dt⟩ϕ = qE · vg + µ
∂B

∂t
,

Guiding-center drift motions

• Summing over one species leads to js · E.

js⊥ ≈ps∥
B × (B · ∇)B

B4 + ps⊥
B × ∇B

B3 + · · ·

curvature drift
Fermi mechanism

∇B drift
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2D PIC simulation results

−5

0

5

10

ε̇
c

Curvature drift

∇B drift

Magnetization

Sum

K̇e

0 100 200 300 400 500

tΩci

−10

−5

0

5

10

15

20

ε̇
c

K̇i

electron

ion

En
er
gi
za
tio

n

adapted from Li et al., 17

• βe = 0.02, Bg = 0
• The primary acceleration is
associated with curvature
drift.

• Fermi mechanism becomes
less efficient as guide field
increases (see also Dahlin et al., 14).
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Energization due to flow compression and shear
The energization associated with drift motions is equivalent to

∇ · (ps⊥vE)−ps∇ · vE−(ps∥ − ps⊥)bibjσij + nsms(dus/dt) · vE

compression
shear

Li et al., 18

• Shear is only effective for anisotropic particle distributions.
16 / 37



One limitation of 2D simulations
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High-energy electron distribution

Acceleration rate associated with curvature drift
Red means stronger acceleration

High-energy electrons cannot access the major acceleration
regions when trapped in islands. (Dahlin et al. 17, Li et al. 17, 19)
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3D physics relevant to electron acceleration
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• Chaotic magnetic field lines.
• Self-generated turbulence,
different from k−5/3.
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3D physics prevent electrons from being trapped
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Fast electron transport in 3D

Particle initial 
position
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Acceleration rate associated with curvature drift

Test-particle simulation

Li et al., 19

Energetic electrons can access major acceleration regions in 3D.
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Power-law electron energy spectrum
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• More efficient electron acceleration in 3D (see also Dahlin et al. 16, 17).
• The power-law spectrum persists throughout the simulation in
3D but not in 2D.
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Why is there a power-law?

Acceleration rate α = ε̇/ε
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1. Primary acceleration is due to a Fermi-type mechanism.

2. The acceleration rate α is nearly a constant in 3D.
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Pitch-angle scattering of energetic electrons
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• Anisotropy level is lower in 3D than that in 2D.
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Summary on particle acceleration and transport

Kinetic simulations → Macroscopic modeling
• Acceleration mechanisms: flow compression and shear
• Fast spatial transport of energetic particles (diffusion?)
• Turbulence leads to more isotropic particle distributions?
• Turbulence spectrum is different from Kolmogorov?
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Solving Parker’s transport equation

Kinetic simulations → Macroscopic modeling
• Flow compression and shear (2nd-order)
• Fast spatial transport of energetic particles (diffusion? Yes)
• Turbulence leads to more isotropic particle distributions? Yes
• Turbulence spectrum is different from Kolmogorov? No

∂f

∂t
= ∂

∂xi

[
κij

∂f

∂xj

]
−(Ui+Vd,i)

∂f

∂xi
+ 1
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∂
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p2Dpp
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)
+p

3
∂Ui

∂xi

∂f
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+Q

• Solve the equation using stochastic integration (e.g., Zhang 99)

• Magnetic field and flow are provided by MHD simulations.
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2D MHD simulation (Bg = 0)

Li et al. 18
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Compressible reconnection layer
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Energy spectra (constant κ∥ and κ⊥)
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• The dependence on guide field is consistent with solar flare
observations (Qiu et al. 2010).
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Energy spectra (κ⊥/κ∥ = 0.01)

• κ∥ ∼ κ⊥ ∼ p4/3, according to quasi-linear theory (e.g. Jokipii 1966)
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• Power-law indices are consistent with observations (Effenberger et

al. 2017; Oka et al. 2018).
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2D particle distributions

Li et al. 18• Spatially and temporally dependent
• They can be input for nonthermal emission modeling (e.g., by

GX_Simulator).
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2D simulations with line-tied boundary (preliminary)
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2D Forbes-Lin model
(a) (b)

Li et al. in preparation
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Summary on the macroscopic kinetic model

• In the diffusion limit, solving Parker’s transport equation leads
to the formation of power-law energy distributions.

• The model produces spatially and temporally dependent
particle distributions.

Ongoing works
• Include momentum diffusion terms due to flow shear and
wave-particle interactions.

• Include spatially dependent particle injection and turbulence
properties.

• Extend the model to 3D.
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A framework for studying particle acceleration

Kinetic simulations
• Acceleration mechanisms
• Turbulence properties

MHD simulations
• Flare geometry
• B-field and plasma flows

Macroscopic energetic-particle model
Spatially and temporally dependent energetic
particle distributions.

Emission modeling
Emission maps from different
viewing perspectives

Observations
HXR and microwave emissions
in different regions
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Takeaways

• Primary acceleration mechanisms: flow compression and shear
• Self-generated turbulence is important for particle acceleration
and transport.

• A macroscopic model, including compression acceleration and
spatial diffusion, can lead to efficient particle acceleration.

• Such a model can produce observable signatures.
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Publications on building the macroscopic model

• Li et al., ApJ, 884, no. 2 (2019): 118.
• Li et al., ApJ, 879, no. 1 (2019): 5.
• Li et al., ApJ, 866, no. 1 (2018): 4.
• Li et al., ApJ, 855:80 (2018)
• Li et al., ApJ, 843.1 (2017): 21.
• Li et al., ApJL, 811:L24 (5pp), 2015 October 1
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