Large-scale Particle Acceleration during Magnetic Reconnection in Solar Flares

Xiaocan Li

Dartmouth College Fan Guo, Hui Li, Patrick Kilian, Adam Stanier (LANL) Bin Chen (NJIT), Chengcai Shen (SAO) Yi-Hsin Liu (Dartmouth), Gang Li (UAH)

August 21, 2020

Outline

Overview

- Particle acceleration during solar flares
- A framework for studying particle acceleration

2 Particle acceleration and transport

- Acceleration mechanisms
- The role of turbulence

3 A macroscopic energetic-particle model

- Solving Parker's transport equation in 2D
- Other preliminary results

4 Conclusions

Overview

- Particle acceleration during solar flares
- A framework for studying particle acceleration
- 2 Particle acceleration and transport
 - Acceleration mechanisms
 - The role of turbulence
- 3 A macroscopic energetic-particle model
 - Solving Parker's transport equation in 2D
 - Other preliminary results

4 Conclusions

Nonthermal particle acceleration in solar flares

Evidence

- HXR: nonthermal electrons
- γ-ray: nonthermal ions
- Impulsive SEP events

Possible particle acceleration sites

Evidence for acceleration by reconnection

Similar acceleration mechanism for ions

Challenges in modeling particle acceleration

• The scale separation is enormous in flares.

1m	$10^3 \mathrm{m}$	10^4m $10^5 - 10^7 \text{m}$	$10^{8} m$
d_i	Largest PIC	MHD Observation Grid Resolution	Flare

• 3D physics in reconnection is complicated.

• A larger number of particles are accelerated (Lin & Hudson 76, Krucker et al., 10).

Methods to model particle acceleration in flares

1m	$10^3 \mathrm{m}$	10^4m $10^5 - 10^7 \text{m}$	10 ⁸ m
d_i	Largest	MHD Observation	Flare
	PIC	Grid Resolution	

Kinetic simulations

- Self-consistent
- Suitable for studying acceleration mechanisms and turbulence properties

• Small size

Test-particle + MHD

- Capture large-scale dynamics
- No wave-particle interaction
- No feedback
- Energy spectrum is too hard

Combine these two in a framework?

A framework for studying particle acceleration

Overview

- Particle acceleration during solar flares
- A framework for studying particle acceleration

2 Particle acceleration and transport

- Acceleration mechanisms
- The role of turbulence

3 A macroscopic energetic-particle model

- Solving Parker's transport equation in 2D
- Other preliminary results

4 Conclusions

Fermi mechanism in reconnection

- One reflection off the reconnection outflow
- Multiple reflections off the reconnection outflow
 - Contracting magnetic islands (e.g.,

Drake et al. 06)

- Merging magnetic islands (e.g., Oka et al.
 10)
- Trapping near the X-line (e.g., Egedal et al. 15)
- Turbulence scattering (e.g., Li et al. 19)

One electron trajectory from 2D PIC simulation

Particle acceleration is associated with drift motions.

Drift along electric field \Rightarrow energization

In the guiding-center approximation,

$$\langle d\varepsilon/dt \rangle_{\phi} = q \mathbf{E} \cdot \mathbf{v}_{g} + \mu \frac{\partial B}{\partial t},$$

Guiding-center drift motions

Summing over one species leads to $j_s \cdot E$.

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Fermi mechanism

2D PIC simulation results

•
$$\beta_e = 0.02, B_g = 0$$

- The primary acceleration is associated with curvature drift.
- Fermi mechanism becomes less efficient as guide field increases (see also Dahlin et al., 14).

Energization due to flow compression and shear

The energization associated with drift motions is equivalent to

 $\nabla \cdot (p_{s\perp} \boldsymbol{v}_E) - p_s \nabla \cdot \boldsymbol{v}_E - (p_{s\parallel} - p_{s\perp}) b_i b_j \sigma_{ij} + n_s m_s (d\boldsymbol{u}_s/dt) \cdot \boldsymbol{v}_E$

Shear is only effective for anisotropic particle distributions.

One limitation of 2D simulations

High-energy electrons cannot access the major acceleration regions when trapped in islands. (Dahlin et al. 17, Li et al. 17, 19)

3D physics relevant to electron acceleration

3D physics prevent electrons from being trapped

Fast electron transport in 3D

Energetic electrons can access major acceleration regions in 3D.

Power-law electron energy spectrum

- More efficient electron acceleration in 3D (see also Dahlin et al. 16, 17).
- The power-law spectrum persists throughout the simulation in 3D but not in 2D.

Why is there a power-law?

- I. Primary acceleration is due to a Fermi-type mechanism.
- 2. The acceleration rate α is nearly a constant in 3D.

Pitch-angle scattering of energetic electrons

• Anisotropy level is lower in 3D than that in 2D.

Summary on particle acceleration and transport

Kinetic simulations \rightarrow Macroscopic modeling

- Acceleration mechanisms: flow compression and shear
- Fast spatial transport of energetic particles (diffusion?)
- Turbulence leads to more isotropic particle distributions?
- Turbulence spectrum is different from Kolmogorov?

Overview

- Particle acceleration during solar flares
- A framework for studying particle acceleration
- **2** Particle acceleration and transport
 - Acceleration mechanisms
 - The role of turbulence

3 A macroscopic energetic-particle model

- Solving Parker's transport equation in 2D
- Other preliminary results

4 Conclusions

Solving Parker's transport equation

Kinetic simulations \rightarrow Macroscopic modeling

- Flow compression and shear (2nd-order)
- Fast spatial transport of energetic particles (diffusion? Yes)
- Turbulence leads to more isotropic particle distributions? Yes
- Turbulence spectrum is different from Kolmogorov? No

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial x_i} \left[\kappa_{ij} \frac{\partial f}{\partial x_j} \right] - (U_i + V_{d,i}) \frac{\partial f}{\partial x_i} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) + \frac{p}{3} \frac{\partial U_i}{\partial x_i} \frac{\partial f}{\partial p} + Q_{pp} \frac{\partial f}{\partial p} \right]$$

- Solve the equation using stochastic integration (e.g., Zhang 99)
- Magnetic field and flow are provided by MHD simulations.

2D MHD simulation ($B_g = 0$)

Compressible reconnection layer

Energy spectra (constant κ_{\parallel} and κ_{\perp})

• The dependence on guide field is consistent with solar flare observations (Qiu et al. 2010).

Energy spectra ($\kappa_{\perp}/\kappa_{\parallel}=0.01$)

• $\kappa_{\parallel} \sim \kappa_{\perp} \sim p^{4/3}$, according to quasi-linear theory (e.g. Jokipii 1966)

• Power-law indices are consistent with observations (Effenberger et

al. 2017; Oka et al. 2018).

2D particle distributions

Spatially and temporally dependent

• They can be input for nonthermal emission modeling (e.g., by GX Simulator).

2D simulations with line-tied boundary (preliminary)

2D Forbes-Lin model

Summary on the macroscopic kinetic model

- In the diffusion limit, solving Parker's transport equation leads to the formation of power-law energy distributions.
- The model produces spatially and temporally dependent particle distributions.

Ongoing works

- Include momentum diffusion terms due to flow shear and wave-particle interactions.
- Include spatially dependent particle injection and turbulence properties.
- Extend the model to 3D.

Overview

- Particle acceleration during solar flares
- A framework for studying particle acceleration
- 2 Particle acceleration and transport
 - Acceleration mechanisms
 - The role of turbulence
- 3 A macroscopic energetic-particle model
 - Solving Parker's transport equation in 2D
 - Other preliminary results

4 Conclusions

A framework for studying particle acceleration

- Primary acceleration mechanisms: flow compression and shear
- Self-generated turbulence is important for particle acceleration and transport.
- A macroscopic model, including compression acceleration and spatial diffusion, can lead to efficient particle acceleration.
- Such a model can produce observable signatures.

Publications on building the macroscopic model

- Li et al., ApJ, 884, no. 2 (2019): 118.
- Li et al., ApJ, 879, no. 1 (2019): 5.
- Li et al., ApJ, 866, no. 1 (2018): 4.
- Li et al., ApJ, 855:80 (2018)
- Li et al., ApJ, 843.1 (2017): 21.
- Li et al., ApJL, 811:L24 (5pp), 2015 October 1