

Overview of the Russian-American Konus-Wind experiment

R. L. Aptekar, D. D. Frederiks, S. V. Golenetskii, Ph.P. Oleynik, V. D. Pal'shin, D. S. Svinkin, A. E. Tsvetkova, M.V. Ulanov, A.A. Kokomov *Ioffe Institute, St.Petersburg, Russia* T.L. Cline NASA Goddard Space Flight Center, Gereenbelt, Maryland, USA

Joint Russian-US Konus-Wind experiment

- Launched on November 1, 1994
 Two detectors S1 and S2: NaI(TI) 13 cm x 7.5 cm, Be entrance window.
 - Located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres
- Continuous observations of all sky
- ~20 keV 15 MeV energy range (present time)
- ~100-160 cm² effective area
- The orbit of s/c excepts an interferences from radiation belts and the Earth shadowing.
- Exceptionally stable background
- □ Duty cycle ~95%
- Detects virtually all rather bright bursts

<u>Two detectors S1 and S2:</u> NaI(TI) 13 cm diameter, 7.5 cm height, 12.5 cm Be entrance window. Located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres
Burst mode:
Time history analyzer: resolution 2ms – 256 ms, total duration 230s
20 – 80 keV 4096 ch
80 – 300 keV 4096 ch
300 – 1200 keV 4096 ch
Pulse Height analyzer: accumulation time 64ms – 8.192 s, duration 79 – 492 s
PHA1 20 – 1100 keV 63 ch quasilog scale
PHA2 350 keV – 15 MeV 63 ch quasilog scale
<u>Background mode:</u> accumulation time 1.47 – 2.94 s
Count rate:
20 – 80 keV
80 – 300 keV
300 – 1200 keV

> 15 MeV

Summary (up to 2014, July; only triggered events):

- 2465 GRBs: ~125 GRBs/year (2702 GRBs in the Current BATSE GRB catalog)
- 190 Swift/BAT GRBs 21% of BAT GRBs
- □ 132 GRBs with measured redshift

<u>Non-GRB science:</u>

- 249 triggers caused by SGR bursts; two SGR giant flares, two burst clusters, four ultra-long bursts
- 940 solar flares
- several giant flares from Cygnus X-1
- Continuous observations of pulsating emission from accreting pulsars: Vela X-1, GX 301-2, A0535+262, GRO J1008-57 and others

KW GRB distributions and classification

loffe

Physical

Technical

Institute

The subsample of 1168 bright GRBs is well described by two lognormal distributions. Boundary at $T_{50} \sim 0.6$ s 30% short-duration, 70% long-duration In the full sample ~400 short GRBs (~16%; the short weak GRBs are undersampled) (BATSE: 24%, BAT: 8%, GBM: 18%)

~9% of short GRBs have weak long tail (extended emission)

 $10^{\log T_{50}}$ worksnop on GRBs: 20 years of Konus-Wind

- Wide energy range let us to determine GRB spectral parameters: low energy PL index α, peak energy E_p, high energy PL index β (for Band model), and bolometric fluence and peak flux.
- **D** For GRBs with z, E_{iso} , L_{iso} , and $E_{p,rest}$ can be determined

Konus-Wind has observed all GRBs with bright prompt optical emission.

Among them the famous GRB 990123 (m ~9), GRB 041219A (m ~14), GRB 050820A (m ~14.5), GRB 080319B (m ~5.3)

GRB 080319B: z=0.937, $L_{iso,peak} \approx 10^{53}$ erg s⁻¹, $E_{\gamma,iso} \approx 10^{54}$ erg, $E_{\gamma} \approx 4 \times 10^{50}$ erg ($\theta \approx 0.2^{\circ}$, 4°)

- Wind orbit is far from the Earth magnetosphere (at distance of 1-7 light seconds) that enables nearly uninterrupted observations of all sky under <u>very stable background</u>.
- Only a few ultra-long GRBs (with durations > 1000 s) have been reported to date.

The 3rd interplanetary network (IPN), which has been in operation since 1990, presently consists of 9 spacecraft: AGILE, Fermi, RHESSI, Suzaku, and Swift, in Iow Earth orbit; INTEGRAL, in eccentric Earth orbit with apogee 0.5 light-seconds; Wind, up to ~7 light-seconds from Earth; MESSENGER, en route to Mercury; and Mars Odyssey, in orbit around Mars.

The IPN operates as a full-time, all-sky monitor for transients down to a threshold of about 6×10^{-7} erg/cm² or 1 photon/cm²/s. It detects ~335 cosmic gamma-ray bursts per year.

IPN localizes many bright and interesting GRBs, improves Fermi GBM and LAT locations, help to find untriggered BAT bursts

Searches for: gravitational wave bursts, neutrino signals, UHE photons, giant SGR flares in nearby galaxies, bursts which occurred in conjunction with Type Ib/c supernovae

Short GRB 051103 – SGR giant flare in M81/M82?

GRB 051103

VLA 21cm map

- The IPN error box overlaps with M81 group of galaxies
- □ For D_{M81}=3.6 Mpc
 - Energy release: Q_{iso}=7x10⁴⁶ erg
 - Peak luminosity: $L_{max iso} = 4 \times 10^{48} \text{ erg s}^{-1}$
 - (for the 24th December 2004 Giant Flare from SGR 1806-20
 - $Q_{iso} = 2 \times 10^{46} \text{ erg}$
 - $L_{iso,peak} = 4 \times 10^{47} \text{ erg s}^{-1}$
- No detections from optical and radio followup observations
- Another possibility (Lipunov et al. 2005; Hurley et al. 2009): SGRB in a nearby (~100 Mpc) galaxy: Q_{iso}=5x10⁴⁹ (D/100Mpc)² erg

Short GRB 070201 – SGR giant flare in Andromeda galaxy

GRB 070201

GALEX synthesized M31 UV image

The IPN error box overlaps with M31 (Andromeda) galaxy (with its prominent circular ring that considered to be the main SF region)

D For D_{M31} = 780 kpc

Energy release: Q_{iso}=1.5x10⁴⁵ erg

Peak luminosity: $L_{max iso} = 1.2 \times 10^{47} \text{ erg s}^{-1}$ (for the 5th March 1979 Giant Flare from SGR 0526-66

 $Q_{iso} = 7 \times 10^{44} \text{ erg}$

 $L_{max iso} \sim 10^{46} \text{ erg s}^{-1}$)

- Both the temporal and energetic characteristics of the event on 2007 February 1 match the general pattern of a GF very closely.
- Beyond a doubt, we can conclude that this event is a GF which originated in SGR 0044+42 in M31

Ultra-luminous GRB 110918A

Frederiks et al. 2013

Ultra-luminous GRB 110918A

- More than 40-days long Swift/XRT and Swift/UVOT monitoring of the X-ray and optical afterglow shows a power-low temporal decay with index ~1.6 Estimated jet break time ~0.2-1.2 days Implied jet collimation angle ~1.7-3.4 deg $(\theta^2/2 \sim (4-8) \times 10^{-4})$ $E_{v} \sim 10^{51} \text{ erg}$ $L_{y,max} \sim 2 \times 10^{51} \text{ erg s}^{-1}$ П
 - Detection horizon: z~7.5 for Konus-Wind z~12 for Swift-BAT

Ioffe workshop on GRBs: 20 years of Konus-Wind

Golenetskii et al. GCN 15870

Localized by IPN

No credible afterglow was found despite the efforts (Swift/XRT, MASTER, iPTF, Mondy) Marginal LAT detection (from $\sim T_0+500$ s to T_0+2300 s)

The highest peak flux ever measured: 16-ms peak flux (20 keV-10MeV) $F=(1.44\pm0.12)\times10^{-3}$ erg cm⁻² s⁻¹ (~50% higher than the previous record holder, GRB 110918A, with the measured peak flux of ~0.9x10⁻³ erg cm⁻² s⁻¹)

Fluence (20 keV-10MeV): S=(1.14 \pm 0.02)x10⁻³ erg cm⁻² (the most fluent GRB 130427A had S ~2.7x10⁻³ erg cm⁻²)

GRB 140219A

Konus-Wind continues to provide important and often unique data on GRBs:

- Detects almost all bright GRBs and measures its spectral and energetic parameters. Almost no one important event has been missed!
- Routinely provides Ep, bolometric fluences and peak fluxes for bright Swift-BAT bursts (distributed via GCN)
- In the waiting mode observes ultra-long GRBs in their entirety, thereby providing estimations of burst spectral parameters and energetics
- KW is an important vertex of the IPN, that provides localization for many bright GRBs, thereby confirming/disproving their association with optical transients, SNe, high energy transients, nearby galaxies and so on, and enabling search os X-ray, optical, radio, VHE, neutrino and gravitational signals for the most interesting events