Supernova-GRB connection: the Saga continues...

Massimo Della Valle Capodimonte Observatory, INAF-Naples ICRANEt, Pescara

SNe & GRBs at z < 0.2

GRB	SN	Ζ	Ref.
GRB 980425	SN 1998bw	0.0085	Galama et al. 1998
GRB 060218	SN 2006aj	0.033	Campana et al. 2006 Pian et al. 2006
GRB 080109	SN 2008D	0.007	Soderberg et al. 2008 Mazzali et al. 2008
GRB 100316D	SN 2010bh	0.06	Bufano et al. 2012 Chornock et al. 2010 Cano et al. 2011 Margutti et al. 2013
GRB 030323	SN 2003dh	0.16	Hjorth et al. 2003 Stanek et al. 2003
GRB 031203	SN 2003lw	0.11	Malesani et al. 2004
GRB 130702A	SN 2013dx	0.15	D'Elia et al. 2014

Properties of GRB-SNe (broad-lined SNe-Ic)

SN 1998bw

SN 1987A

Aspherical explosion

Maeda et al. 2006, 2008 see also Tautenberger et al. 2009

E_K ~ 30 x 10⁵¹ erg

 $E_{K} \sim 1 \times 10^{51} \text{ erg}$

Distant GRB/SNe?

GRB census > 0.2

GRB	SN	Ζ	Ref.
GRB 021202	SN 2002lt	1.002	Della Valle et al. 2003
GRB 050525A	SN 2005nc	0.606	Della Valle et al. 2006
GRB 101219B	SN 2010ma	0.55	Sparre et al. 2011
GRB 060729	SN no name	0.54	Cano et al. 2011
GRB 090618	SN no name	0.54	Cano et al. 2011
GRB 081007	SN 2008hw	0.53	Della Valle et al. 2008 Zhi-ping et al. 2008
GRB 091127	SN 2009nz	0.49	Cobb et al. 2010 Berger et al. 2011
GRB120714B	SN 2012eb	0.40	Klose et al. 2012
GRB 130427A	SN 2013cq	0.34	Melandri et al. 2014 Xu et al. 2013
GRB 120422A	SN 2012bz	0.28	Melandri et al. 2012
GRB 120729A; 130215A; GRB 130831A	?; SN2013ez , SN2013fu	0.8;0.6;0.48	Cano et al. 2014

Bjornsson et al. 2001

Garnavich et al. 2003

Della Valle et al. 2003

Cano et al. 2014

Della Valle et al. 2006

Bumps could be produced by different phenomena as dust echoes or thermal re-emission of the afterglow or thermal radiation from a pre-existing SN remnant

(e.g. Esin & Blandfors 2000; Waxman & Draine 2000; Dermer 2003)

At higher redshift secure SN identification becomes difficult because the SN gets fainter, which leads to problems of obtaining sufficient signal-to-noise in the spectra, a problem that is aggravated by contamination of the host galaxy and the afterglow

Time consuming observations: single epoch spectrum

Berger et al. 2011 SN 2009nz @ z=0.49

Zhi-Ping et al. 2013 SN 2008hw @ z=0.53

Della Valle et al. 2003 SN 2002|† @ z=1

Kelly et al. 2008 find that SNe-Ic and LGRB erupt in the brightest regions of their hosts (see also Fruchter et al. 2006)

Long-GRBs have ~ $30 - 50 M_{\odot}$ Raskin et al. 2008

What is the rate of SNe-Ib/c?

Asiago Survey (Cappellaro et al. 1999)

galaxy N. SNe*			k .	rate [SNu]			
type	Ia	Ib/c	II	Ia	Ib/c	II	
E-SO	22.0			0.18 ± 0.06	< 0.01	< 0.02	
S0a-Sb	18.5	5.5	16.0	0.18 ± 0.07	0.11 ± 0.06	0.42 ± 0.19	
Sbc-Sd	22.4	7.1	31.5	0.21 ± 0.08	0.14 ± 0.07	0.86 ± 0.35	
Others#	6.8	2.2	5.0	0.40 ± 0.16	0.22 ± 0.16	0.65 ± 0.39	
All	69.6	14.9	52.5	0.20 ± 0.06	0.08 ± 0.04	0.40 ± 0.19	

Rate for Ib/c: 0.152 ± 0.064 SNu

Guetta & DV 2007

 1.8×10^4 SNe-Ibc Gpc⁻³ yr⁻¹ $\rightarrow 1.1 \times 10^4$ up to 2.6×10^4

What is the rate of SNe-Ib/c?

Lick Survey (Li et al. 2011)

Rate	SN Ia	SN Ibc	SN II
Early(fiducial; SNuK) Late(fiducial; SNuK) Early(LF-average; SNuK) Late(LF-average; SNuK)	$\begin{array}{c} 0.064\substack{+0.008\\-0.007}(\substack{+0.013\\-0.013})\\ 0.074\substack{+0.006\\-0.012}\\0.048\substack{+0.006\\-0.005}(\substack{+0.010\\-0.010})\\0.065\substack{+0.006\\-0.005}(\substack{+0.010\\-0.010})\end{array}$	$\begin{array}{c} 0.008\substack{+0.006\\-0.004}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.096\substack{+0.010\\-0.009}\begin{pmatrix}+0.018\\-0.018\end{pmatrix}\\ 0.006\substack{+0.004\\-0.003}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.083\substack{+0.009\\-0.008}\begin{pmatrix}+0.016\\-0.016\end{pmatrix}\end{array}$	$\begin{array}{c} 0.004^{+0.003}_{-0.002}(\substack{+0.001\\-0.002}(\substack{-0.001\\-0.001})\\ 0.172^{+0.011}_{-0.036}(\substack{+0.045\\-0.003}(\substack{+0.002\\-0.001}(\substack{+0.001\\-0.001})\\ 0.149^{+0.010}_{-0.009}(\substack{+0.039\\-0.031})\end{array}$
Vol-rate $(10^{-4} \text{ SN Mpc}^{-3} \text{ yr}^{-1})$	$0.301\substack{+0.038\\-0.037}(\substack{+0.049\\-0.049})$	$0.258\substack{+0.044\\-0.042}(\substack{+0.058\\-0.058})$	$0.447^{+0.068}_{-0.068}(^{+0.131}_{-0.111})$

Rate for Ib/c: 2.6 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ 2.2 x 10⁴ \rightarrow 3 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹

What is the rate of (long) GRBs?

1.5

T

GRB Gpc ⁻³ yr ⁻¹		1-		: 	BATSE Swift GBM	
 1.5 Schmidt 1999 0.15 Schmidt 2001 0.5 Guetta et al. 2005 1.1 Guetta & Della Valle 2001 	007	(X) -0.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	tta et al. 2011	1.5 kev] ph/c	zm ² s)	2.5
1.1 Liang et al. 2007	Sample	Rate $(z = 0)^1$	<i>L</i> * [50–300] keV	<i>a</i> ₁	<i>a</i> ₂	$\chi^2/\text{d.o.f.}^3$
> 0.5 Pelangeon et al. 2008	-	Gpc ⁻³ yr ⁻¹	10 ⁵¹ erg/s			
13 Wanderman and Piran	GBM	$0.5^{+0.3}_{-0.2}$	$5.5^{+1.5}_{-2}$	$0.3^{+0.1}_{-0.5}$	$2.3^{+0.6}_{-0.3}$	1.1
	BAISE Swift	$1.0_{-0.4}^{+0.3}$ $0.6_{-0.1}^{+0.3}$	$4^{+1.5}_{-1.5}$ 3.3 $^{+2.5}_{-0.5}$	$0.1^{+0.3}_{-0.1}$ $0.1^{+0.3}_{-0.1}$	$2.0_{-0.5}^{-0.5}$ $2.7_{-0.4}^{+1}$	0.95

What is the local rate of (long) GRBs?

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001)
(Guetta, Piran & Waxman 2004)
(Guetta & DellaValle 2007)
(Ruffini et al. 2006)

 $(\vartheta \sim 4^\circ)$ $(\vartheta \sim 9^\circ)$ $(\vartheta > 25^\circ)$ for sub-lum GRBs $(\vartheta \sim 4 \pi)$

To BEam or not to BEam

GRB 080319B

In some cases there is not evidence for beaming, i.e. an achromatic break was not detected (Covino et al. 2006; Panaitescu et al. 2006).

10

time (hours)

10

10

time (hours)

10

time (hours)

The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

G. Ghirlanda^{1*}, G. Ghisellini¹, R. Salvaterra², L. Nava³, D. Burlon⁴, G. Tagliaferri¹, S. Campana¹, P. D'Avanzo¹, A. Melandri¹ (2013)

1° < ϑ < 20° ϑ_{peak} ~ 4°

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001) (Guetta, Piran & Waxman 2004) (Guetta & DellaValle 2007) (Ruffini et al. 2006) $(\vartheta \sim 4^\circ)$ $(\vartheta \sim 9^\circ)$ $(\vartheta > 25^\circ)$ for sub-lum GRBs $(\vartheta \sim 4 \pi)$

GRB/SNe-Ibc: 1.5%-0.003%

Discovery of a Relati Gamma-ray Trigger

A. M. Soderberg¹, S.
R. A. Chevalier⁴, P. Chandra⁵,
V. Chaplin⁷, V. Connaughton⁷,
N. Chugai¹¹, M. D. Stritzinger¹²,
E. M. Levesque^{1,15}, J. E. Grindlay¹
P. A. Milne¹⁶, M. A. P. Torres¹

GRB/SNe-Ibc ~ 1/146 GRB/SNe-Ibc ~ 0.7%

< 5% at 99%

GRB/SNe-Ibc: 1.5%-0.003%

 Hz^{-1}

erg

Luminosity

Radio

HL-GRBs vs. LL-GRBs

SNe & GRBs at z < 0.1

GRB	SN	Z	E _{iso} (erg)
GRB 980425	SN 1998bw	0.0085	$\sim 10^{48}$
GRB 060218	SN 2006aj	0.033	$\sim 10^{50}$
GRB 080109	SN 2008D	0.007	$\sim 10^{46}$
GRB 100316D	SN 2010bh	0.06	$\sim 10^{50}$

LL-GRBs sample a volume ~10⁶ smaller → Rate: up to × 10³ Gpc⁻³ yr⁻¹ 0.7 GRB Gpc⁻³ yr⁻¹ (Della Valle 2005, Pian et al. 2006, Cobb et al. 2006, Soderberg et al. 2006, Liang et al. 2006, Guetta & Della Valle 2007, Amati et al. 2007)

LL vs. HL Rates

LL-GRBs ~ 71 x (1 ÷ 10) ~ 70 ÷ 700 *LL-GRBs* $Gpc^{-3} yr^{-1}$

<fb⁻¹>_{HL-GRBs} ~ 75 ÷ 500

HL-GRBs ~ 0.7 x $(fb^{-1}) \sim 50 \div 350 Gpc^{-3} yr^{-1}$

The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

G. Ghirlanda^{1*}, G. Ghisellini¹, R. Salvaterra², L. Nava³, D. Burlon⁴, G. Tagliaferri¹, S. Campana¹, P. D'Avanzo¹, A. Melandri¹

LL-GRB/HL-GRB < ~ 20

LL vs. HL GRBs Clues to different central engines?

Piran et al. 2013; Tsutsui & Shigeyama 2013;

Haensel et al. 2009 10^{4} 0.4 Normalized Number of GRBs 0.2 0.1 1000 0.0 $E_{p,i}$ (keV) 2 6 8 10 4 $\theta_{\rm jet}$ 100 + 10 $1^{\lfloor}_{10^{46}}$ 10^{48} $\begin{array}{c} 10^{52} \\ \text{E}_{\text{K}} \end{array}$ 10^{54} 10⁵⁰ E_R $E_{\rm iso}$ (erg)

PNS M=2.5 M_{\odot} ;R=13 km

GRB 120422A/SN 2012bz: Bridging the Gap between Low- And High-Luminosity GRBs

Conclusions

The energetic budget of most GRBs (LL-GRBs 10x) is a fraction (of a tiny fraction) of Ek of HNe. They might well be related to relatively low energy phenomena ($E_{\theta} < ~ 10^{50}$ erg) such as SN shock break-out (2006aj/060218) or jet failed (2008D/XRF 080109) events or gravitational capture (GRB 101225A) of minor bodies onto compact stellar remnants.

Conclusions cont'd

The so called "cosmological GRBs" $E_{iso} \sim 10^{52-54}$ erg ($E_{\theta} < \sim 10^{52}$ erg, after correction for beaming) are more energetic events that have been explained with different models.

Their frequency of occurrence is small: GRBs/SNe-Ibc = 0.003-1.5% → HL-GRBs/HNe: 3%-20% (cfr. LL-GRBs/HNe > 40%)

Open Issues

Detection of very energetic ($E_{\theta} > \sim 10^{52 \div 53}$ erg) events require more energetic scenarios likely based on black hole formation (spin down of Kerr BH? van Putten et al. 2011)