Konus-Wind observations of GRBs with measured redshifts

A. Tsvetkova, R. Aptekar, D. Frederiks,S. Golenetskii, P. Oleynik, V. Pal'shin,D. Svinkin, M. UlanovIoffe Institute

Contents

- The burst sample
- Temporal parameters
- Spectral parameters
- Energetics
- Correlations
- Conclusions

Joint Russian-US Konus-Wind experiment

- Launched on November 1, 1994
- Two detectors (S1 and S2) are located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres
- Continuous observations of all sky
- ~100-160 cm² effective area
- Sensitivity ~(1-3)x10⁻⁷ erg cm⁻²
- The orbit of s/c excepts interferences from radiation belts and the Earth shadowing.
- Now around L1 at ~5 light seconds from Earth
- Exceptionally stable background
- Spectral data: ~20 keV 15 MeV energy range (present time)
- Time history: ~20 keV 1 MeV

Two modes: waiting (resolution 2.944 s) and triggered (2 ms -256 ms, from T₀-0.512 s to T₀+230 s)

Redshift distribution

Data set	Number of bursts	Min z	Max z	Mean z	Median z
All GRBs	401	0.00649 (GRB080109)	9.4 (GRB090429B)	2.0	1.7
KW GRBs	126	0.096 (GRB091117A)	5.0 (GRB111008A)	1.5	1.2
Type I KW GRBs	11	0.096 (GRB091117A)	0.92 (GRB070714B)	0.5	0.4

Durations

Durations are calculated in the 75 keV – 1 MeV range

Parameter	Min	Max	Mean	Median	Duration
Observer frame T ₅₀ (s)	0.03 (GRB130603B)	160.76 (GRB050820A)	16.30	7.73	
Observer frame T ₉₀ (s)	0.07 (GRB130603B)	267.904 (GRB120624B)	44.26	21.68	
Observer frame T ₁₀₀ (s)	0.11 (GRB130603B)	288.51 (GRB120624B)	63.84	34.93	
Rest frame T ₅₀ (s)	0.02 (GRB130603B)	44.51 (GRB050820A)	6.94	3.08	
Rest frame T ₉₀ (s)	0.05 (GRB130603B)	109.91 (GRB060614)	18.73	9.42	
Rest frame T ₁₀₀ (s)	0.08 (GRB130603B)	170.88 (GRB130427A)	28.04	13.66]

Temporal parameters

Spectral parameters: PL indices

Spectral analysis: time-integrated and peak spectra, CPL and Band models.

The GRBs outside the synchrotron "line-of-death" and the synchrotron cooling limit:

 α >-2/3: 15% of time-int & 25% of peak spectra α <-3/2: 10% of time-int & 5% of peak spectra

Parameter	mean	median
name	value	value
lpha eta eta eta	-0.98 -2.56	-0.97 -2.48

7

Spectral parameters: $E_{\rm p}$ and flux

$E_p \; (\mathrm{keV})$	37	3778	370	271
Flux (erg cm ^{-2} s ^{-1})	7.87×10^{-8}	7.75×10^{-4}	6.58×10^{-6}	1.37×10^{-6}

Peak spectral parameters as a function of the time-integrated spectral parameters

Spectral parameters: ΔE_p statistic and the difference between the low- and high-energy indices

Prompt emission parameters overview

Data set	Low-energy index α	High-energy index β	Peak energy E_p (keV)
Time-integ	rated spectra		
This Catalog (CPL)	-1.05 ± 0.34		371 ± 409
This Catalog (Band)	-0.97 ± 0.36	-2.55 ± 0.45	305 ± 235
Fermi GBM Goldstein et al. 2012 (CPL)	-0.90 ± 0.40		224 ± 353
Fermi GBM Goldstein et al. 2012 (Band)	-0.82 ± 0.40	-2.17 ± 0.42	186 ± 309
BATSE Kaneko et al. 2006 (CPL)	-1.18 ± 0.22		321 ± 161
BATSE Kaneko et al. 2006 (Band)	-1.08 ± 0.20	-2.33 ± 0.27	262 ± 101
Peak	spectra		
This Catalog (CPL model)	-0.93 ± 0.38		442 ± 449
This Catalog (Band model)	-0.84 ± 0.38	-2.55 ± 0.43	365 ± 296
Fermi GBM Goldstein et al. 2012 (CPL)	-0.81 ± 0.44		215 ± 253
Fermi GBM Goldstein et al. 2012 (Band)	-0.75 ± 0.41	-2.16 ± 0.45	194 ± 232

Observer frame energetics

Rest frame energetics

 $\Omega_M = 0.315, h = 0.673$ The highest E_{iso}: GRB090323 The highest L_{peak,iso}: GRB110918A (The Planck Collaboration, 2013) 40 40 35 35 30 30 Number of bursts Number of bursts 25 25 20 20 15 15 10 10 5 5 0 0 10⁵¹ 10⁵² 10⁵³ 10⁵⁴ 10⁵⁵ 10⁴⁹ 10⁵⁰ 10⁵¹ 10⁵² 10⁵³ 10⁵⁴ 10⁵⁵ 10⁵⁰ 10⁵⁶ 10⁴⁹ 10⁵⁶ $\mathsf{E}_{_{\mathrm{iso}}}\left(\mathrm{erg}\right)$ $L_{peak,iso}$ (erg s⁻¹)

Parameter	min	\max	mean	median
name	value	value	value	value
$ \frac{\overline{E_{\gamma,iso} \text{ (erg)}}}{L_{peak,iso} \text{ (erg s}^{-1})} $	4.18×10^{49} 2.90×10^{50}	5.78×10^{54} 4.97×10^{54}	5.34×10^{53} 2.99×10^{53}	1.63×10^{53} 9.27×10^{52}

Collimation-corrected energetics

Homogeneous (HM) Sari et al. 1999: $n \propto r^0$ Wind (WM) Li & Chevalier 2003: $n \propto r^{-2}$

The highest E_{γ} : GRB090323 The highest L_{peak} : GRB090926A (HM), GRB060112(WM)

Parameter name	min value	max value	mean value	median value
$E_{\gamma,HM}$ (erg)	3.44×10^{47}	3.66×10^{52}	2.69×10^{51}	6.14×10^{50}
$E_{\gamma,WM}$ (erg)	$1.90 imes 10^{48}$	$4.27 imes 10^{51}$	$5.28 imes 10^{50}$	2.80×10^{50}
$L_{\gamma,peak,HM} \ (\text{erg s}^{-1})$	$1.60 imes 10^{48}$	$6.79 imes 10^{51}$	$7.94 imes 10^{50}$	2.50×10^{50}
$L_{\gamma,peak,WM} \ (\text{erg s}^{-1})$	3.28×10^{48}	2.36×10^{51}	2.38×10^{50}	1.07×10^{50}

Energetics

Observer frame correlations

Amati relation

Correlation and data sample	Ν	$ ho_S$	P-value	a	b	$a_{\sigma_{ext}}$	$b_{\sigma_{ext}}$	σ_{ext}
Amati "I+II" Amati "II"	110 103	$0.58 \\ 0.70$	2.0×10^{-11} 2.0×10^{-16}	0.467 ± 0.003 0.500 ± 0.003	-22.21 ± 0.16 -23.94 ± 0.17	0.209 ± 0.032 0.337 ± 0.030	-8.35 ± 1.70 -15.22 ± 1.59	$0.303 \\ 0.229$

Yonetoku relation

Correlation and data sample	Ν	$ ho_S$	P-value	a	b	$a_{\sigma_{ext}}$	$b_{\sigma_{ext}}$	σ_{ext}
Yonetoku "I+II" Yonetoku "II"	110 103	$0.68 \\ 0.71$	2.8×10^{-16} 4.6×10^{-17}	1.995 ± 0.025 1.942 ± 0.024	47.35 ± 0.07 47.51 ± 0.07	1.613 ± 0.157 1.611 ± 0.146	48.33 ± 0.44 48.38 ± 0.41	$0.577 \\ 0.530$

Ghirlanda relation

Corre and data	lation N a sample	V	ρ_S	P-value	a	b	$a_{\sigma_{ext}}$	$b_{\sigma_{ext}}$	σ_{ext}
Ghirlanda "I+II" ((HM) 3	39	0.38	0.017	0.378 ± 0.003	-16.59 ± 0.17	0.203 ± 0.063	-7.57 ± 3.20	0.329
Ghirlanda "II" (HI	M) 3	38	0.39	0.016	0.379 ± 0.003	-16.65 ± 0.17	0.211 ± 0.064	-7.99 ± 3.24	0.330
Ghirlanda "II ^{OPT} "	(HM) 1	5	0.43	0.11	0.491 ± 0.009	-22.33 ± 0.47	0.323 ± 0.098	-13.74 ± 4.97	0.278
Ghirlanda "I+II" ((WM) 3	39	0.38	0.017	0.593 ± 0.006	-27.33 ± 0.29	0.306 ± 0.095	-12.66 ± 4.78	0.329
Ghirlanda "II" (W	M) 3	38	0.39	0.016	0.595 ± 0.006	-27.42 ± 0.29	0.318 ± 0.096	-13.29 ± 4.84	0.330
Ghirlanda "II ^{OPT} "	' (WM) 1	5	0.43	0.11	0.784 ± 0.016	-36.95 ± 0.81	0.487 ± 0.147	-21.91 ± 7.41	0.276

Collimation-corrected Yonetoku relation

Correlation and data sample	N	$ ho_S$	P-value	a	b	$a_{\sigma_{ext}}$	$b_{\sigma_{ext}}$	σ_{ext}
Yonetoku (coll. corr.) "I+II" (HM)	39	0.39	0.016	2.107 ± 0.042	44.42 ± 0.12	0.873 ± 0.285	47.86 ± 0.81	0.689
Yonetoku (coll. corr.) "II" (HM)	38	0.39	0.016	2.096 ± 0.042	44.45 ± 0.12	0.861 ± 0.285	47.88 ± 0.81	0.689
Yonetoku (coll. corr.) "II ^{OPT} " (HM)	15	0.40	0.14	1.440 ± 0.048	46.41 ± 0.13	0.892 ± 0.369	47.92 ± 1.02	0.543
Yonetoku (coll. corr.) "I+II" (WM)	39	0.33	0.04	1.311 ± 0.030	46.30 ± 0.09	0.520 ± 0.213	48.55 ± 0.61	0.516
Yonetoku (coll. corr.) "II" (WM)	38	0.34	0.036	1.273 ± 0.030	46.40 ± 0.08	0.506 ± 0.206	48.56 ± 0.59	0.499
Yonetoku (coll. corr.) "II ^{OPT} " (WM)	15	0.34	0.22	0.843 ± 0.039	47.73 ± 0.11	0.419 ± 0.257	48.92 ± 0.72	0.388

Relations overview

Paper	Relation	N	$ ho_S$	P-value	a
Amati et al. 2002	Amati	9	0.92	$5.0 imes 10^{-4}$	0.52 ± 0.06
Amati 2003	Amati	20	0.92	$1.1 imes 10^{-8}$	0.35 ± 0.06
Ghirlanda et al. 2004	Amati	27	0.80	$7.6 imes 10^{-7}$	0.40 ± 0.05
Ghirlanda et al. 2004	Ghirlanda	15	0.94	1.4×10^{-7}	0.706 ± 0.047
Yonetoku et al. 2004	Yonetoku	16	0.96	$5.3 imes 10^{-9}$	2.0 ± 0.2
Ghirlanda et al. 2005	$E_{p,i}$ - L_{iso}	25	0.83	2.4×10^{-7}	0.50 ± 0.02
Ghirlanda et al. 2005	$E_{p,i}$ – L_{γ}	16	0.83	$5.6 imes 10^{-5}$	0.56 ± 0.03
Ghirlanda et al. 2005	Ghirlanda	17	0.93	3.2×10^{-8}	0.69 ± 0.04
Friedman & Bloom 2005	Amati	29	0.88	4.9×10^{-10}	0.496 ± 0.037
Friedman & Bloom 2005	Ghirlanda	19	0.86	2.9×10^{-6}	0.669 ± 0.34
Amati 2006	Amati	39	0.89	3.1×10^{-14}	0.57 ± 0.02
Ghirlanda et al. 2006	Amati	19			0.57 ± 0.02
Ghirlanda et al. 2006	Ghirlanda (HM)	19			0.67 ± 0.04
Ghirlanda et al. 2006	Ghirlanda (WM)	19			1.00 ± 0.06
Nava et al. 2006	Amati	18	0.82	3.1×10^{-5}	0.57 ± 0.02
Nava et al. 2006	Ghirlanda (HM)	18	0.93	$2.3 imes 10^{-8}$	0.69 ± 0.04
Nava et al. 2006	Ghirlanda (WM)	18	0.92	$6.9 imes 10^{-8}$	1.03 ± 0.06
Ghirlanda et al. 2007	Amati	62			0.57 ± 0.01
Ghirlanda et al. 2007	Ghirlanda (HM)	25			0.70 ± 0.04
Ghirlanda et al. 2007	Ghirlanda (WM)	25			1.05 ± 0.06
Amati et al. 2008	Amati	70	0.872	2.6×10^{-30}	0.57 ± 0.01
Amati et al. 2008	$\text{Amati}^{\sigma_{ext}}$	70	0.872	2.6×10^{-30}	0.54 ± 0.03
Amati et al. 2009	Amati	95			0.57 ± 0.01
Amati et al. 2009	$\text{Amati}^{\sigma_{ext}}$	95			0.54 ± 0.03
Amati 2010	Amati	67		0.88	0.57 ± 0.01
Gruber et al. 2011	Amati (Types I+II)	30	0.74	$1.7 imes 10^{-5}$	0.52 ± 0.06
Gruber et al. 2011	Yonetoku* (Types I+II)	30	0.7	2.3×10^{-5}	0.58 ± 0.08
Zhang et al. 2012	Amati	110	0.85	1.2×10^{-31}	0.51 ± 0.03

Summary

- 126 GRBs with known redshifts were analyzed.
- The relation coefficients (a and b) strongly depend on the approximation method.
- The coefficients of collimated-corrected relations depend on the circumburst medium type.
- The Type I GRBs affect only the relations between the time-integrated parameters.
- No obvious correlations between E_{p,i} and the collimation-corrected energetics is seen.

Thank you!