Fermi/GBM view of Magnetar Bursts: Bursts, Burst Active Episodes & Burst Induced Changes

Ersin Göğüş Sabancı University, Istanbul

in collaboration with the Fermi/GBM team

General Properties of Magnetars

- Slowly rotating systems ($P_{spin} \sim 2 12 s$)
- Rapidly spinning down (dP/dt~ 10⁻¹³ 10⁻¹¹ s/s)
- Bright X-ray sources (L ~10³⁴-10³⁵ erg/s)
- Transient magnetars (L $\sim 10^{32}$ erg/s in quiescence)
- Young systems as deduces from their galactic locations
- Unique X-ray spectral properties
- Characterized by <u>bright hard X-ray / soft gamma</u> ray bursts

Typical Magnetar Bursts

- Brief (~0.1-few s)
- Irregular times between bursts (seconds - years)
- Diverse time profiles
- Intense (~10³⁶ 10⁴¹ erg/s)
- Distinct from giant flares in duration, luminosity and energy spectrum

Intermediate Events

More Intermediate Events

The Gamma-ray Burst Monitor

- 4 x 3 NaI Detectors with different orientations.
- 2 x 1 BGO Detector either side of spacecraft.
- View entire sky while maximizing sensitivity to events seen in common with the LAT

The Large Area Telescope (LAT)

GBM BGO detector

200 keV – 40 MeV 126 cm², 12.7 cm Triggering, Spectroscopy Bridges gap between NaI and LAT.

-GBM NaI detector

8 keV – 1000 keV 126 cm², 1.27 cm Triggering, Localization, Spectroscopy.

1. GBM magnetar burst catalog

2. Activity based classification of magnetars

3. Burst induced effects in:

- Persistent soft & hard X-ray emission
- Pulse profile
- Source environment

GBM Magnetar Burst Catalog

Collazzi et al. 2015

Magnetar	Active Period	Triggers	Comments	
SGR J0501+4516	Aug/Sep 2008	26	New source at Perseus arm	
SGR J1550-5418	Oct 2008 Jan/Feb 2009 Mar/Apr 2009 June 2013	7 117/331+ 14 1	Known source - first burst active episodes	
SGR J0418+5729	June 2009	2	New source at Perseus arm	
SGR 1806-20	Mar 2010	1	Old source - reactivation	
1E 1841-045	Feb 2011 June/July 2011	3 4	Known source - first burst active episodes	
SGR 1822-1606 Swift 1834-0846	July 2011 Aug 2011	1 1	New sources in galactic center region	
4U 0142+61	July 2011	1	Old source - reactivation	
1E 2259+586	April 2012	1	Old source - reactivation	
Unconfirmed Origin	2008-2013	21	Multiple error boxes include new source 3XMM J185246.6+003317	

All triggers: temporal properties

Unknown event avg T_{90} = 61 ms (known sources avg ~100 ms)

All triggers: spectral properties

Burst Energetics

SGR 1550-5418

Fluence: $7x10^{-9}-1x10^{-5} \text{ erg/cm}^2$ E= $(2x10^{37}-3x10^{40}) d_5 \text{ erg}$ Flux: $8x10^{-7}-2x10^{-4} \text{ erg/cm}^2$ s L: $5x10^{38} -1x10^{41^2} \text{ erg/s}$ *Total Energy Release:* $6.6x10^{41}d_5 \text{ erg}$ (8-200 keV)

SGR 1806-20: 3.0x10³⁶-4.9x10³⁹erg **SGR 1900+14**: 7x10³⁵-2x10³⁹erg **SGR 1627-41**: 10³⁸-10⁴¹ erg

SGR 0501+4516: 2x10³⁷-1x10⁴⁰erg 1E 2259+586: 5x10³⁴-7x10³⁶erg

Magnetar Distribution in our Galaxy

NEW: GBM Bursts detected since Fermi launch SYNERGY: Swift-Fermi-**RXTE-IPN** \Rightarrow Old source reactivation **SGRs AXPs**

Kouveliotou et al. 2014

Magnetars with Low Burst Rates

Magnetars with Low Burst Rates

How can sources with low dipole magnetic fields (e.g., SGR 0418+5729 or SGR 1822.3–1606) generate bursts?

XMM – Newton observations of SGR 0418+5729 on 2009 August 12 for 65 (36) ks gave the answer: Güver, Göğüş, Özel (2011), Tiengo et al. (2013)

T₉₀ Duration of Burst Active Episode

 T_{90} : Time since the onset of an outburst during which 90% of all observed bursts are recorded.

Onset of a burst active episode: If at least 5 bursts were observed from the same magnetar in 24 hours.

Source	Outburst
SGR 1550-5418	2009
SGR 1627-41	1998
SGR 0501+4516	2008
SGR 1900+14	1998, 2002
SGR 1806-20	1983, 1996, 1998, 2003/04
	Goguş 2014

SGR 1806–20: 1983, 1996, 1998, 2003/04

Göğüş 2014

SGR 1900+14: 1998, 2002

SGR 1627–41 (1998)

SGR 0501+4516 (2008)

SGR 1550+5418 (2009)

T₉₀ of Burst Active Episode

Source

T_{90-BurstActivity}

SGR 1550-5418 (2009) SGR 1627-41 (1998) SGR 0501+4516 (2008)

SGR 1900+14 (1998) SGR 1806-20 5.6 days 9.1 days 6.3 days

183 days 112 - 311 days

Burst active episode of a prolific transient lasts less than 10 days.

Classification of Magnetars Based on Their Bursting Behavior

Prolific Bursters	Prolific Transients	AXPs with SGR-like Bursts	Transients with Low Burst Rates
SGR 1900 + 14	SGR 1627 - 41	1E 1048-5937 1E 2259+586	SGR 0418 + 5729
SGR 1806 – 20	SGR 1550 - 5418	4U 0142+61 1E 1841-045	SGR 1833 - 0832
SGR 0526 – 66	SGR 0501 + 4516	CXO J164710.2- 455216	Swift 1822.3 – 1606
		XTE J1810-197	Swift 1834.9– 0846
		AX J1818.8 - 1559?	SGR 1745 – 29 SGR 1935+2154?

SGR 1745–29 & SGR 1833–0832 Flux Decay

X-ray flux of SGR 1745–29 is constant for ~ 10 days following the onset

Similar flux trend was seen in SGR 1833 - 0832

Continuous heating of the crust by trapped fireball?

Kannea et al. 2013

SGR 1550-5418 = 1E 1547.0-5408

ASCA, XMM: "Magnetar Candidate" Gelfand & Gaensler 2007 Radio observation: P = 2.0698 s, \dot{P} = 2.3 x 10⁻¹¹ s / s B = 2.2 x 10¹⁴ G \rightarrow Magnetar Camilo et al. 2008

SGR-like bursts:

- ➤ Oct 2008 (~1 week)
- Jan-Feb 2009 (~1 month)
- Mar -Apr 2009 (~1 month)

Most intense bursting on January 22, 2009

~450 bursts

GBM Trigger 090122037

Enhanced Persistent Emission

- Trigger at 00:53:52 UT on January 22, 2009
- 1st of 41 GBM Triggers
- Trigger data for 600 s
- 58 untriggered bursts identified within 600 s

Kaneko et al. 2010

Pulsation Detection

Timing Analysis

Lomb – Scargle test: P: $0.1 \rightarrow 10$ s in 50 – 100 keV

 $P = 2.0699 \pm 0.0024 s$

Coherent signal: strongest in T_0 + 120 - 210 s

No other episode of pulsations on this day or the following four days.

Pulse Profiles

- Double peaked at low E
- Single peak at high E
- No pulsation > 110 keV

(a) 10 - 14 keV
(b) 14 - 22 keV
(c) 22 - 33 keV
(d) 33 - 50 keV
(e) 50 - 74 keV
(f) 74 - 110 keV

RMS Pulsed Fraction Spectrum

- Correlates with energy
- Peaks in 50 74 keV
- Not significant > 110 keV
- Indication of a "dip"

Spectral Analysis Time Integrated Spectrum [T₀ + 72 – 248 s]

 $\frac{\text{Total Energy}}{4.3 \times 10^{40} \text{ ergs}}$

Additional Blackbody (kT = 18 keV) : Δ Cstat = 13.5 (for 2 DOF)

Time Resolved Spectra (νF_{ν}) [T₀ + 72 - 117, 122 - 169, 173 - 223 s]

74 – 117 s

Power Law only (Blackbody is not needed)

25%

 $F_{BB}/F_{TOTAL} = 26\%$

Evidence of the Blackbody Component

Temporal Properties

- Pulsations most significant
 in 120 210 s
- Pulse fraction peaks in 50 – 74 keV
- Pulsations not seen above 110 keV

Spectral Properties

- Blackbody required in 122 – 223 s
- Blackbody kT ~ 17 keV

• $F_{BB} \rightarrow 25\%$ $F_{PWRL} \rightarrow 75\%$

Blackbody: Radius of the Emitting Region

Assuming a hot spot of radius R_{HS} on the neutron star surface

For D = 5 kpc, kT = 17 keV :

 $A_{HS} \approx 0.044 \ (D/5 \ kpc)^2 \ km^2$

$\rightarrow R_{\rm HS} \approx 120 \ {\rm m}$

 \rightarrow Sign of a trapped fireball

Kaneko et al. 2010

The GBM Magnetar Team

- C. Kouveliotou (NASA/MSFC, USA), G. Younes (USRA, USA), S. Guiriec (UoMD, USA)
- M. Baring (Rice University, USA)
- E. Göğüş, Y. Kaneko, (Sabancı University, Turkey)
- A. Watts, A. van der Horst, D. Huppenkothen, M. van der Klis, R. Wijers, T. van Putten (U. of Amsterdam, The Netherlands)
- O. Kargaltsev (GWU), G. Pavlov (PSU)
- J. Granot (The Open University, Israel)
- J. McEnery, N. Gehrels, A. Harding (NASA/GSFC, USA)
- L. Lin (APC, U of Paris, France)