

Thermal radiation of magnetars

A.D. Kaminker

Coauthors: A.Y. Potekhin, D.G. Yakovlev, Ioffe Physical Technical Institute, Saint-Petersburg, Russia

and

A.A. Kaurov The University of Chicago, USA

loffe GRB workshop 2014,

September 25, 2014

Thermal evolution of magnetars

Magnetars:

- SXRs + AXPs -- neutron stars with ultrahigh magnetic field : $B \ge 10^{14}$ G.
- Majority of data evidence -- they are powered neither by accretion nor by rotation
- Most probably -- they are driven by ultrahigh **B-fields**
- Activity: quasi-persistent thermal and non-thermal emission, X-ray and gamma-ray bursts, flares and giant flares, glitches, QPOs, etc.
- Sources: wild processes of magnetic energy release in neutron stars interiors or magnetospheres

Main problem:

- SXRs + AXPs are spending a lot of energy: up to
- Whether it could be the energy of ultrahigh **B-field** $W_{tot} \lesssim 10^{50}$ erg within the star (in the crust or core)

Main question:

• Where is this energy released and how? What are mechanisms?

Magnetars versus ordinary cooling neutron stars

Main trends: BB-temperatures vs. ages

Characteristic age:

$$t_c = P/2\dot{P}$$

Inferred dipole $B_d \approx 3.2 \times 10^{19} \sqrt{P\dot{P}}$ G. magnetic field :

Correlations: BB- temperatures vs. B-fields

Pons et al. (2007)

Phenomenological approach

The aim is to explain thermal emission of magnetars

 Basic assumption: internal heating is inherent feature of ultrahigh B-fields:

 B-fields → heater → quasi-persistent thermal emission

 Phenomenological points:
 the emission is powered by internal heat sources

- The maximum stored energy $E_{tot} \simeq 10^{49} 10^{50}$ erg can be the energy of internal magnetic field $B \simeq (1-3) \times 10^{16}$ G in the magnetar internal crust and/or core
- The stored energy is released in the crust

This approach has been confirmed recently:

by series of 2D- calculations of magneto-thermal evolution: Pons, Miralles, Geppert 2009, Pons & Rea 2012, Vigano et al. 2013, Perna et al. 2013

Our approach is much more primitive, but it allows to set a few principal points which we believe to be useful.

Heating and cooling of neutron stars

<u>Oversimplified</u> equation of thermal diffusion with account of neutrino emissivity Q_v and heating power per unit volume H:

 $c_v \frac{\partial T}{\partial t} = \operatorname{div}(\kappa \nabla T) - Q_v + H -$ (a) The thermal balance equation (GR) (b) The heat transport equation (GR)

Surface photon luminosity: $L_{\gamma} = 4\pi\sigma R^2 T_s^4$ Heat blanketing envelope $T_{\rm s} = T_{\rm s}(T_{\rm s})$ Including Q_{i} : $ho_b = 10^{10} \text{ g cm}^{-3}$; thickness ~ 100 m; mass of the envelope $< 10^{-6} M_{\odot}$ Heat content of NS: $U_T \sim 10^{48} T_9^2$ ergs **1D** code: $L_r(r) = 4 \pi r^2 F_r(r, t)$, T(r,t)**2D** code: $F_{r,\theta}(r, \theta, t), T(r, \theta, t)$

Features of internal heating

The energy can be stored in the entire star or in inner crust but released in the outer crust

Results of 2D code

Weak heat spreading along the surface

Heat does not spread along the surface: heater's area is projected on the surface 1D and 2D codes give similar results Pons and Rea (2012) But more general approach: Pons, Miralles, Geppert (2009) Vigano et al. (2013)

Total heat power vs. surface photon luminosity and heat flux towards NS core

Hot spot $\Delta\Omega/4\pi = 0.1$ Kaminker et al. 2006

"Eddington" limit: Pons and Rea 2012

$$W^{\infty}(t) = \int V e^{2\Phi} H,$$

 L_s^{∞} (erg/s)

(erg/s)

 L^{∞}_{nucore}

Main features of magnetars

- Magnitars -- SGRs and AXPs : neutron stars with ultrahigh B-fields -- exhibit strong persistent thermal and non-thermal emission.
- Magnetars may be treated as cooling neutron stars with internal heating.
- Internal heating is probably inherent feature of ultrahigh **B-fields**.
- The heating may be supported by Ohmic decay, e.g., inside local domains in the outer crust under hot spots.
- Mechanism of **B-field-energy** transport to the **heater** is not clear.

Main features of heating

 Comparison of 2D and 1D calculations : the heat mainly diffuses radially inwards ----- neutrinos from the NS core. Small fraction of the heat \longrightarrow outwards \longrightarrow thermal surface radiation *Heater is located in a blob* — *a hot spot radiates. Heater* is distributed over a *layer* \longrightarrow the whole surface radiates. Two regimes of heating: (a) The conduction outflow regime: $H < 10^{20} \text{ erg cm}^3 \text{ s}^{-1}, T < 10^9 \text{ K};$ The thermal emission is regulated by the heater's power and the neutrino emission in the NS core; Strong thermal coupling : the outer crust with the core; (b) The neutrino outflow regime: $H > 10^{20} \text{ erg cm}^{-3} \text{s}^{-1}$, $T > 10^{9} \text{K}$; Thermal decoupling : the outer crust and the core. The most economical heater is intermediate: $H \sim 10^{20} \text{ erg cm}^{-3} \text{ s}^{-1}$, $T \sim 10^9 \text{ K}$ Efficiency of surface T – radiation L / W does not exceed a few %

Quiesent Luminosity vs. B-field

Inferred dipole B-field:

 $B_d \approx 3.2 \times 10^{19} \sqrt{P\dot{P}}$ G.

Spin-down energy:

 $\dot{E} = I\Omega\dot{\Omega} = -(2\pi)^2 I\dot{P}/P^3$

Characteristic age:

 $t_c = P/2\dot{P}$

Olausen & Kaspi (2014)

Neutron star model

•EOS (APR IV): Akmal, Pandharipande, Ravenhall 1998, Heiselberg & Hjorth-Jensen 1999; neutrons, protons, electrons, and muons in NS cores

Maximum mass: MMAX=2.16 MSUN , R=10.84 km , central density = 2.45x1015 g/cc Example of slow cooling: M=1.4 MSUN, R=12.74 km, central density = 7.755x1014 g/cc

Direct Urca: central density > 1.05x1015 g/cc, M>1.77 MSUN

•Effects of superfluidity are neglected

- Iron heat blanketing envelopes (densities <1010 g/cc), but role of light elements on the surface – Kaminker et al. 2009
- •Radial magnetic field B=5x1014 G above hot spots: synchrotron neutrino emission in the crust + anisotropic thermal conductivity and neutrino emission in the blanketing envelopes

•Cooling codes: either 2D, or 1D

Neutrino emissivity *Q* and heat intensity *H vs.* density

Direct Urca <u>kernel</u> of high neutrino emission