Fermi/GBM localizations of γ-ray bursts

Jochen Greiner Max-Planck Institut für extraterrestrische Physik, Garching

Collaborators:

Francesco Berlato, J. Michael Burgess, Björn Biltzinger, Felix Kunzweiler

Neutrino or GW Counterpart Search

IceCube tracks (1°) vs. showers (~15°)

Previous Fermi/GBM locations do not provide improvements, ...but this can be cured

Neutrino-Showe

Neutrino-track

3Lac Source

Abbott+2016, Living Rev. Relativity, 19, 1

GBM Detection: Sky + Bkg + Earth + Sun

Each detector sees a certain relative fraction of sky (bkg and sources), Earth albedo or blockage, etc

This relative fraction changes with time At a given time, this fraction is different for each detector

25 years Konus-Wind, St. Petersburg, 9.-13.9.2019

Previous GBM localization performance

• integrating this function to 95% containment implies $2\sigma_{sys} \sim 16^{\circ}$ • only GRBs with statistical error $\gg 16^{\circ}$ are not affected by systematics (=4%)

The problem: for a given GRB, we don't know to which of these two components it belongs?

 \rightarrow So we have to adopt the large uncertainty for every GRB in order to be on the safe side (in terms of counterpart search)

GBM localization algorithm

Principle: Relative response at different energies varies with off-axis angle

- So far: <u>same</u> spectral template spectrum is assumed for all (long/short) GRBs to compute model rates, and a position is derived via comparison to the relative observed rates in each detector on a 1° grid on the sky
 Connaughton+2015
- Previous Fermi/GBM (and CGRO/BATSE) method has large systematic error:

 \succ Correct way: fit spectrum and position at the same time \rightarrow BALROG

Spectral templates for position determination

with a built-in Pythonic user interface

dramatic effect on spectral parameters

BALROG

Likelihood Model

 \succ

Burgess, Yu, Greiner (2016)

$$-2\log L = 2\sum_{i=1}^{N} \underline{M_i(\vec{\phi}, \vec{p})} + t_s f_i - D_i \log(\underline{M_i(\vec{\phi}, \vec{p})} t_s f_i) + \frac{1}{2\sigma_{B,i}^2} (B_i - t_s f_i)^2 - D_i (1 - \log D_i)$$

p=position, Φ =spectral par. B_i =bkg cts, $\sigma_{B,i}$ =Gaussian error in ith channel D_i=observed total data cts

25 years Konus-Wind, St. Petersburg, 9.-13.9.2019

Jochen Greiner - 8

BALROG results on GBM/Swift GRBs

- Statistical errors about 30% larger, as they incorporate the location uncertainty
- Proof of concept against 115 Swift localized GRBs (2008-2018): For all the statistical 3σ + systematic error contour includes the true position when $\sigma_{sys} \sim 1^{\circ} (2^{\circ}) (s/c \text{ dep.})$
- Paradigm shift: problems since 1991 (CGRO/BATSE)

Fermi/GBM Localizations

Previous Fermi/GBM (and CGRO/BATSE) method has large systematic error: Connaughton+2015

Connaughton+2015 Last 30 years until present Th ("official" GBM team) with Follow-up search finds nothing! error t t $1\sigma_{stat}$ $1\sigma_{stat+sys}$ Real loc

This would be the correct way with the previous systematic

Example from real life: GRB 170705.115

25 years Konus-Wind, St. Petersburg, 9.-13.9.201!

Performance of the Automatic BALROG

- ➤ 225 localizations computed in real-time since Nov. 1, 2018
- ➢ 38 have accurate localizations from Swift/MAXI/INTEGRAL/IPN
- Percentage of GRBs, containing the accurate position within their 1σ, 2σ or 3σ error region:

Consequences for follow-up

Berlato+2019

Size of sky area reduces by substantial fraction:

- for 96% of GRBs where 2σ stat. < syst....
- ...the search regions would have to be inflated by 800 deg² (DoL) vs. 50 deg² (BALROG's systematics)
- ...96% of all DoL-localized GRBs come with inflated error region (only 4% have a statistical error larger than the DoL systematics)
- Smaller size also implies much less tiling by small(er)-FOV instruments
- Smaller size has substantially smaller number of false positives: ZTF finds roughly 3 variables per deg² per night!

Future: multi- λ instruments

Wavelength	# src / □º	FOV	Sensitivity	instruments
γ-rays	0	++	-	Fermi/GBM, INTEGRAL/ACS, IPN
X-rays	2	+		Swift (tiling), MAXI
UV	10		-	-
Optical/NIR	1000	+	-	many
IR	50			-
Radio	2	_	-	LOFAR

 \rightarrow Largest progress possible: with new, more sensitive γ -ray detector(s)

25 years Konus-Wind, St. Petersburg, 9.-13.9.2019

Four Different Localization Methods

Relative rates in different detectors cheap, but localization accuracy ≥1°

Relative arrival times at different detectors cheap, localization accuracy depends on detector size, time resolution and satellite distances

Coded mask large size, small field-of-view

Compton camera heavy and expensive

Fermi/GBM

GCN

- Rapid localization of source on celestial sphere
- Pointing of optical and other telescopes to identified position for detailed study

Summary

- BALROG provides accurate localizations with ~10x smaller (systematic) error, primarily for strong GRBs
- $> \dots$ within ~30 min
- ...via GCN, or automatically after sign up at https://grb.mpe.mpg.de
- ...updated with TTE data after ~1-6 hrs (data availability) (just on Web-page; no GCNs)
- Most promising rapid (few years) route to better localizations: detectors somewhat bigger than Konus on interplanetary s/c

Reply to M. Briggs / arXiv:1909.03006

- It is nice to see that 3 years after we suggested BALROG, the Huntsville team has finally recognized that their templates are a big problem, and now have changed them
- It is hard to understand why they still don't do the final step of fitting position and spectrum together
- It is nice to see that our publicly available BALROG code is used! Fairness implies that they make their code public as well.
- It is irritating to see that upon problems in using that code they don't dare to ask about clarifications, but submit a paper draft to arXiv with lots of strange (if not to say wrong) statements
- The plot shown by M. Briggs is irrelevant it is not the offset what counts, but its ratio to the quoted error! A GBM position should come with its appropriate statistical and systematic error, which has not been the case, and is still not the case for Huntsville-issued GCNs!