Bayesian analysis of Konus-Wind solar flare data

Sergey Anfinogentov¹

¹Institute of solar-terrestrial physics

loffe Workshop on GRBs and other Transient Sources: 25 years of Konus-Wind

September 9-13, 2019, St.Petersburg, Russia

The language of probability

A cheat sheet

The language of Physics	The Probability language		
$oldsymbol{x}$ could be anything	Flat distribution $P(x)=1$		
$oldsymbol{x}$ is positive	$ ext{Half flat distribution}: onumber \ P(x) = egin{cases} 1, & x > 0 \ 0, & x \leq 0 \end{cases}$		
x lies between a and b	Uniform distribution: $P(x) = egin{cases} rac{1}{b-a}, & a < x < b \ 0, & ext{otherwise} \end{cases}$		
According to the measurements:	Normal distribution: $P(x) =$		
$x=x_0\pm 3\sigma$	$rac{1}{\sqrt{2\pi\sigma^2}}\exp(-rac{(x-x_0)^2}{2\sigma^2})$		
Poison distribution: A device			
detected $oldsymbol{n}$ photons in 1 second	The probability to observe $m{n}$		
exposure. The photon flux through	photons if $oldsymbol{\lambda}$ us known		
the device is $\lambda = n \pm \sqrt{n}$ (for large	$P(n \lambda) = rac{e^{-\lambda}\lambda^n}{n!}$		
N)			

Two approaches of probability interpretation

Frequentist approach	Bayesian approach
How frequent will the result appear	What is the <i>degree of our belief</i> in
in repetitive experiments?	the obtained result?
We expect to see 50 heads and 50	After flipping a coin 100 times and
tails after flipping a fair coin 100	observing 54 heads and 46 tails we
times.	are 90% sure that the coin is fair.
If a true value of a quantity is $x_{f 0}$,	If we have a single measurement of
many measurement of it will be	x and know σ , our knowledge
distributed by	about true value x_{0} is
$P(x x_0) = rac{1}{\sqrt{2\pi\sigma^2}} \exp(-rac{(x-x_0)^2}{2\sigma^2})$	$P(x_0 x) \sim rac{1}{\sqrt{2\pi\sigma^2}}\exp(-rac{(x-x_0)^2}{2\sigma^2})$
Forward problem	Inverse problem

The Bayes theorem

The knowledge about parameters $\theta = [\theta_1, \theta_2, \cdots, \theta_N]$ of a model M is improved by the new data D:

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$$
(1)

- $P(\theta|M)$ prior distribution (before seeing the data)
- P(D| heta|M) the likelihood function(information from the data)
- $P(\theta|D, M)$ Posterior distribution (improved knowledge)
- P(D|M) Evidence of the model M (normalisation coefficient)

Model comparison

Probabilities of competing models $M_i = M_1, M_2...M_N$ can be calculated using the Bayes theorem:

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$\tag{2}$$

•
$$P(M_i)$$
- prior probability for a model M_i
• $P(D) = \sum\limits_{j=1}^N P(D|M_j)P(M_i)$ – normalization constant

Bayes factor

The normalisation constant in P(D|M) (1) from the Bayes theorem

$$Z = P(D|M) = \int P(D|\theta, M) P(\theta|M) d\theta$$
(3)

It is a measure of how consistent with the data D is the model M . Two models M_1 and M_2 can be quantitatively compared by calculating the Bayes factor:

$$B_{12} = \frac{P(D|M_1)}{P(D|M_2)} \tag{4}$$

B_{12}	$2\ln B_{12}$	Evidence towards model 1	Prob. of model 1
1-3	0 - 2	Barely worth mentioning	0.5-0.75
3-20	2 - 6	positive	0.75-0.95
20-150	6 - 10	strong	0.95 - 0.99
> 150	> 10	very strong	> 0.99

Solar flare spectrum in gamma-ray range

Credits: Ronald Murphy

- Bremsstrahlung continuum from accelerated electrons and positrons:
- Components caused by accelerated ions are results of nuclear reactions:
 - Nuclear deexcitation lines (templates): nuclear transitions from excited to ground state.
 - Electron-positron annihilation line at 511 keV (gaussian line) from positrons born in β⁺-decay or decay of π⁺.
 - ► Neutron capture line p+n \rightarrow $^{2}\text{H}+\gamma_{2.223 MeV}$.
 - Continuum from π⁰ decay outside Konus-Wind spectral range.

Konus-Wind observation of an X9.3 flare¹ detected on 2017-09-06

¹[Lysenko et al., 2019]

Sergey Anfinogentov

Power Law

Broken Power Law

Sum of two Power Laws

Power Law + Power Law with cut-off

Broken Power Law with exponential cut-off

Bayesian model comparison

No	Model	$\ln Z$	Probability from measurements
1	BPL	-173	0.76
2	BPLexp	-174	0.24
3	PL	-340	0 ²
4	PL + PL2	-181	0 ²
5	PL + CPL	-183	0 ²

²below
$$10^{-3}$$

Bayesian model comparison

No	Model	$\ln Z$	Likelihood	Prior ²	Posterior
1	BPL	-173	0.76	0.05	0.14
2	BPLexp	-174	0.24	0.95	0.86
3	PL	-340	0 ³	0.05	0
4	PL + PL2	-181	0 ³	0.05	0
5	PL + CPL	-183	0 ³	0.95	0

 $^{^2}$ Models with exponential cut-off are preferable (e.g. [Ackermann et al., 2012]) 3 below 10^{-3}

Histograms

Figure: Histograms for PL+CPL model

Bayesian analysis

Histograms

Figure: Histograms for BPOW_EXP model

Sergey Anfinogentov

Bayesian analysis

Fitting a continuum component PL+CPL 2D histograms

Fitting a continuum component BPL with cut-off ^{2D histograms}

Sergey Anfinogentov

Bayesian analysis

Presence of components

Bayesian comparison

No	511 keV	2.2 MeV	Nuclear	$\ln Z$	Prob.
1	+	+	+	-173	0.056
2	+	+	-	-256	04
3	+	-	+	-208	04
4	+	-	-	-289	04
5	-	+	+	-170	0.944
6	-	+	-	-252	04
7	-	-	+	-205	04
8	-	-	-	-320	04

Presence of components

Bayesian comparison

No	511 keV	2.2 MeV	Nucl.	$\ln Z$	Likelihood.	Prior	Post.
1	+	+	+	-173	0.06	0.99	0.85
2	+	+	-	-256	04	0.01	0
3	+	-	+	-208	04	0.01	0
4	+	-	-	-289	04	0.01	0
5	-	+	+	-170	0.94	0.01	0.15
6	-	+	-	-252	04	0.01	0
7	-	-	+	-205	04	0.01	0
8	-	-	-	-320	04	0.99	0

Summary

- Bayesian inference is a universal and robust method for solving inverse problems allowing
 - Inferring model parameters
 - reliable uncertainties estimation
 - quantitative model comparison (comparing rather models than best fits)
- We successfully analysed KW data
 - Superposition of two PLs implies a cross talk between them. Therefore a broken power law model is preferable for describing HXR continuum.
 - Bayesian analysis confirmed presence of accelerated ions in X9.3 flare on 6 September 2017.
 - Details will be given in the talk by Alexandra Lysenko

Many thanks!

- to Alexandra Lysenko, Gregory Fleishman, Dmitry Svinkin and Dmitry Frederiks;
- to organizing committee of the Workshop;
- to Russian Scientific Foundation who supported this study under grant No 18-72-00144;
- to everyone for listening.

Thank you for your attention!

Take home message:

Bayesian analysis is not a "black magic". Let us use it to obtain all available information from observations of solar flares and GRB.

Solar Bayesian Analysis Toolkit

Analysis was done with the SoBAT 5 MCMC code written in IDL and allowing for

- MCMC sampling of a user defined PDF
- Sampling Posterior predictive distribution
- Calculating Bayesian evidence for quantitative model comparison
- Easy to use high level routines for fitting $y = f(x) + N(0,\sigma)$ dependencies.
- Predefined and custom priors for free parameters.

⁵Solar Bayesian Analysis Toolkit (SoBAT) available at https://github.com/Sergey-Anfinogentov/SoBAT

References

Ackermann, M., Ajello, M., Allafort, A., Atwood, W. B., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Bhat, P. N., Bland ford, R. D., Bonamente, E., Borgland, A. W., Bregeon, J., Briggs, M. S., Brigida, M., Bruel, P., Buehler, R., Burgess, J. M., Buson, S., Caliand ro, G. A., Cameron, R. A., Casandjian, J. M., Cecchi, C., Charles, E., Chekhtman, A., Chiang, J., Ciprini, S., Claus, R., Cohen-Tanugi, J., Connaughton, V., Conrad, J., Cutini, S., Dennis, B. R., de Palma, F., Dermer, C. D., Digel, S. W., Silva, E. d. C. e., Drell, P. S., Drlica-Wagner, A., Dubois, R., Favuzzi, C., Fegan, S. J., Ferrara, E. C., Fortin, P., Fukazawa, Y., Fusco, P., Gargano, F., Germani, S., Giglietto, N., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grillo, L., Grove, J. E., Gruber, D., Guiriec, S., Hadasch, D., Hayashida, M., Hays, E., Horan, D., Iafrate, G., Jóhannesson, G., Johnson, A. S., Johnson, W. N., Kamae, T., Kippen, R. M., Knödlseder, J., Kuss, M., Land e, J., Latronico, L., Longo, F., Loparco, F., Lott, B., Lovellette, M. N., Lubrano, P., Mazziotta, M. N., McEnery, J. E., Meegan, C., Mehault, J., Michelson, P. F., Mitthumsiri, W., Monte, C., Monzani, M. E., Morselli, A., Moskalenko, I. V., Murgia, S., Murphy, R., Naumann-Godo, M., Nuss, E., Nymark, T., Ohno, M., Ohsugi, T., Okumura, A., Omodei, N., Orlando, E., Paciesas, W. S., Panetta, J. H., Parent, D., Rolling M. Potrosian V. Piorbattista M. Piron F. Pivato G. Sergey Anfinogentov St.Petersburg, 2019 2/2