Probing solar accelerated particles with Konus-Wind data

Alexandra Lysenko¹, Sergey Anfinogentov², Dmitry Svinkin¹, Dmitry Frederiks¹, Gregory Fleishman^{3,1}, Alexander Altyntsev², Nataliia Meshalkina², Larisa Kashapova², Hugh Hudson^{4,5}, and the Konus-*Wind* team

¹ Ioffe Institute, Saint-Petersburg, Russian Federation
 ² Institute of Solar-Terrestrial Physics, Irkutsk, Russian Federation
 ³ New Jersey Institute of Technology, Newark, USA
 ⁴ School of Physics and Astronomy, University of Glasgow, Glasgow, UK
 ⁵ UC Berkeley, Berkeley, USA

2019

loffe Workshop on GRBs and other Transient Sources: 25 years of Konus-Wind

September 9-13, 2019, St.Petersburg, Russia

- Summary of Konus-*Wind* solar observations.
- Advantages of Konus-Wind for solar flare physics.
- Short elementary bursts as the probe for electron acceleration.
- Gamma-ray emission and ion acceleration.
- The puzzle of behind-the-limb flares.

Summary of Konus-Wind Solar flare observations

Since 1994 Konus-Wind observed

- ${\sim}13000$ solar flares in the waiting mode,
- 1042 solar flares in the triggered mode and among them,
- 94 solar flares at energies > 1 MeV.
- All the data on solar flares registered by Konus-*Wind* in the triggered mode are available online via http://www.ioffe.ru/LEA/kwsun.

Lysenko et al.

- Operates since November 1, 1994 till present time more than two full solar cycles.
- Continuous observations of the Sun in the 20–1200 keV band in the waiting mode. Konus-*Wind* is an analogue of GOES instrument in Hard X-rays.
- High time resolution (up to 2 ms) in the triggered mode.
- Energy range in the triggered mode (\sim 20 keV–15 MeV) covers emission from accelerated particles (both electrons and ions).

Elementary bursts and electron acceleration

- What are the shortest acceleration time scales?
- Are short bursts and longer bursts produced by different acceleration mechanisms?
- Are longer bursts superposition of shorter bursts?
- We selected short "elementary" bursts for estimation of electric field accelerating the particles.

Elementary bursts and electron acceleration

- Acceleration times t_{acc}<50 ms.
- Electron energy $E{\sim}500$ keV.
- Acceleration length $L_{acc} \sim < v > t_{acc} \sim 10 \text{ Mm}.$

• Electric field $E > A/L_{acc} \sim 0.1 \text{ V/m}$, which is one order of magnitude larger than the typical values of the Dreicer field ($\sim 10^{-2} \text{ V/m}$).

"Rapid Variability in the SOL2011-08-04 Flare: Implications for Electron Acceleration" Altyntsev et al., 2019, ApJ, in press

- The strongest solar flare of solar cycle # 24 in soft X-rays.
- One of the strongest photospheric magnetic field \sim 5,500 G (Wang et al. 2018) and strongest coronal magnetic field \sim 4,000 G (Anfinogentov et al. 2019) ever observed.
- Impulsive phase occured during "nights" of both RHESSI and Fermi.

"Gamma-ray emission from the impulsive phase of the 2017 September 6 X9.3 flare" Lysenko et al., 2019, ApJ $\,$

- Accelerated electrons and positrons produced in nuclear reactions
 → continuum, BPL model.
- Accelerated ions \rightarrow nuclear reactions \rightarrow nuclear deexcitation lines (~2–30 MeV ions),
 - \rightarrow neutrons \rightarrow neutron capture line at
 - 2.2 MeV (\sim 20–300 MeV ions),
 - \rightarrow positrons \rightarrow positron-electron annihilation line at 511 keV (from ${\sim}2\,\text{MeV}$ to ${>}300\,\text{MeV}$).

- Low energy part of continuum shows soft-hard-soft evolution.
- BPL power law indices and amplitudes at 100 keV and 10 MeV do not correlate!
 - Second stage electron acceleration?
 - Contribution from the ulstrarelativistic positrons?
 - Other than bremsstrahlung emission mechanisms?
- Ratio of neutron production rate to nuclear deexcitation lines fluxes *F*_{nuclear} is very sensitive to the power law index *s*_{ion} of the accelerated ions.
- Based on time evolution of $F_{2.2}$ and $F_{nuclear}$ we estimated limits for s_{ion} with high (~30 s) time resolution.
- Power law index of the low energy part of the continuum and ion power law index do correlate!

"Ordinary flare"

- Correlation between time profile in hard X-rays and derivative of time profile in soft X-rays Neuprt effect.
- Soft-hard-soft spectral evolution in hard X-rays.

- BTL flare footpoints are located rather far (10–50 degrees) behind the solar limb.
- We observe high coronal sources, stronger footpoint emission is occulted by the limb.
- BTL often show very different behavior relative to "ordinary" flares.

Example of behind-the-limb (BTL) flare: SOL2002-10-27T22:51

Krucker, White, Lin, 2007, Astrophys. journal.

- \bullet Was located ${\sim}50^{\circ}$ behind the solar limb.
- Demonstrated hard-soft-hard spectral evolution.
- Low response in soft X-rays (GOES 1–8 Å band).
- Soft X-rays derivative is ahead of hard X-rays.

Example of behind-the-limb (BTL) flare: SOL2014-09-01T10:59

Ackermann et al., 2017, Astrophys. journal.

- Was located $\sim 44^{\circ}$ behind the solar limb.
- Stereoscopic observations were performed by STEREO-B spacecraft.
- No response in soft X-rays (GOES 1-8 Å band).
- High correlation between hard X-rays, microwaves and gamma-rays > 100 MeV
- No spectral evolution in hard X-rays, spectral index $\gamma \sim 2$.

Lvsenko et al.

Search for behind-the-limb flares in homogeneous Konus-*Wind* waiting mode observations

- Criterium for behind-the-limb candidate selection was low response in GOES 1–8 Å channel relative to intensity in Konus-*Wind*.
- $\bullet\,$ This criterium yielded ${\sim}300$ behind-the-limb candidates out of ${\sim}16000$ events.
- For these candidates we used localisations from different instruments (*RHESSI*, *NoRP*, *OVSA Nancy*).

Search for behind-the-limb flares in homogeneous Konus-*Wind* waiting mode observations

• We found 20 behind-the-limb flares including 3 known from previous studies.

"Catalog of behind-the-limb solar flares registered by the Konus-*Wind* instrument in 1994-2019 yy." Lysenko et al., in preparation

List of publications

- "Sources of Quasi-periodic Pulses in the Flare of 18 August 2012" by Altyntsev et al., 2016, SolPhys.
- "A Cold Flare with Delayed Heating" by Fleishman et al., 2016, ApJ.
- "Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares" by Ackermann et al., 2017, ApJ.
- "Flare SOL2012-07-06: On the Origin of the Circular Polarization Reversal Between 17 GHz and 34 GHz" by Altyntsev et al., 2017, SolPhys.
- "Statistics of "Cold" Early Impulsive Solar Flares in X-Ray and Microwave Domains" by Lysenko et al., 2018, ApJ.
- "Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of 2017 September 6" by Sharykin & Kosovichev, 2018, ApJ.
- "Radio, Hard X-Ray, and Gamma-Ray Emissions Associated with a Far-Side Solar Event" by Grechnev et al., 2018, SolPhys.
- "Electron Acceleration and Jet-facilitated Escape in an M-class Solar Flare on 2002 August 19" by Glesener & Fleishman, 2018, ApJ.
- "Characteristics of Late-phase >100 MeV Gamma-Ray Emission in Solar Eruptive Events" by Share et al., 2018, ApJ.
- "Gamma-Ray Emission from the Impulsive Phase of the 2017 September 6 X9.3 Flare" by Lysenko et al., 2019, ApJ.

Thank you for attention

Neutron capture line

Temporal evolution of the 2.223 MeV line in the absence of the ion spectral evolution can be described as (Prince et al., 1983):

$$F_{2.2}(t) \propto \int_{-\infty}^{t} S(t') R(t,t') dt'$$
(1)

where S(t') – is the neutron production time profile $\propto F_{nuclear}$, R(t, t') – response function, giving 2.223 MeV line at time t from a neutron born at time $t' \propto \exp(-(t - t')/\tau)$, $\tau \sim 100$ s Murphy et al., 2007.

We replaces the integral by the sum (Kurt et al., 2017):

$$F_{2.2}(t_i) \propto \sum_{j=0}^i F_{4-7}(t_j) \exp\left(-rac{t_i-t_j}{ au}
ight) \Delta t_j$$
(2)

The reason of the discrepancy between data and modeling is the decrease of neutron production after 11:56:36. Why?

- Neutron production reduced at least in r_n~5 times.
- Possible reason abrupt steepening of the ion spectrum after the main peak.

Taking the mean ion power index $s_{mean} \sim 4$ and the neutron reduction rate $r_n \sim 5$ we estimated upper limit for s_{before} before the peak and the lower limit for s_{after} after the main peak.

Solar flare candidate selection

