GRBs from NS+BH coalescences: expected rates and properties

Konstantin Postnov Alexander Kuranov SAI MSU

Coalescing compact binaries

 Waveform from two coalescing point-like masses is determined by a combination of component masses (the chirp mass)

$$M_{ch} = (\mu^3 M^2)^{1/5}$$

h ~ $M_{ch}^{5/3} f^{2/3} / r$

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left(\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f}\right)^{3/5}$$

Current Detection horizon

https://www.gw-openscience.org/

D_h~M_{chirp}^{5/6}

Konus-Wind 25

LVC O3 detections

 25 triggers, 20 BH+BH, 3 NS+NS, 2 NS+BH https://gracedb.ligo.org

• No electromagnetic counterparts so far

4

Astrophysical binary BHs

- BH formation
 - Initial ZAMS mass
 - Initial rotation
 - Possible kick
- BH in binaries
 - From massive binary systems
 - In dense stellar clusters (dynamical)
 - Primordial BHs

BH formation from stars (solar metallicity)

Langer (2012)

BH from massive stars

Pair instability SNe (PISNe, Fowler & Hoyle 1964), pulsational PISNe (PPISNe) (Woosley 2017)

13.09.2019

Konus-Wind 25

Dependence on the metallicity and stellar wind mass loss

Fryer et al 2012, Giacobbo et al. 2018

Additional effects in binaries:

- Initial spin misalignment
- Tidal synchronization of the envelope
- Common envelope phase
- Star formation and metallicity history in galaxies

$$\Psi\left(z,\frac{Z}{Z_{\odot}}\right) = \psi(z)\Phi(Z/Z_{\odot}),$$

$$\Phi(Z/Z_{\odot}) = \frac{\hat{\Gamma}[0.84, (Z/Z_{\odot})^2 \ 10^{0.3z}]}{\Gamma(0.84)}$$

- Initial ZAMS mass
- Fraction of collapsed mass

$$k_{BH} = M_{BH}/M_*$$

• Possible kick

$$\frac{w_{BH}}{w_{NS}} = \frac{M_* - M_{BH}}{M_* - M_{OV}} = \frac{1 - k_{BH}}{1 - M_{OV}/M_*}$$

Tutukov, Yungelson 1993 MNRAS) Lipunov, Postnov, Prokhorov 1997 MNRAS)

Mass and spin distributions before coalescence

Without fallback

+ fallback from envelope

PK+ 2019, Physics-Uspekhi (2019, No 11, in press) MNRAS 483, 3288–3306 (2019)

Konus-Wind 25

BH+NS systems

Detection rate BH+BH, BH+NS

Konus-Wind 25

1907.04218

Effective spin/total mass distribution for BH+NS coalescing binaries

1907.04218

Konus-Wind 25

sGRB from NS+BH

R_{tid}>R_{ISCO}

R_{tid}<R_{ISCO}

 $R_{tid} \sim R_{ISCO}$

Kyotoku+'11

Konus-Wind 25

Mass shedding and tidal disruption

$$r_{\rm ISCO}/M = 3 + Z_2 \mp \sqrt{(3 - Z_1)(3 + Z_1 + 2Z_2)}$$
$$Z_1 \equiv 1 + (1 - \chi_1^2)^{1/3} \times \left[(1 + \chi_1)^{1/3} + (1 - \chi_1)^{1/3} \right]$$
$$Z_2 \equiv \sqrt{3\chi_1^2 + Z_1^2}$$

R_{tid}~R_{ns}(M_{bh}/M_{ns})^{1/3}
 Mass shedding if
 R_{tid}>R_{ISCO}

- Depends on NS compactness C=M_{ns}/R_{ns} (EOS)
- Tidal parameter Λ=2k₂/(3C⁵)
- Depends on the BH spin

Mass ratio for tidal disruption

13.09.2019

• Approximately the same as for the mass shedding

Shibata, Taniguchi '11 Konus-Wind 25

Coalescing BH/NS mass ratio

Coalescing BH/NS mass ratio

Konus-Wind 25

 A substantial (>50%) fraction of NS+BH mergings is expected to occur in the tidal disruption regime favoring disk formation around a rotating BH

Mass ejection

'Dynamical' (merger) +
 'viscous' (disc)

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

Type of binary	Remnant	$M_{ m ej,dyn}$	$M_{\rm ej,vis}$	$Y_{e,\mathrm{dyn}}$	$Y_{e, vis}$	$\langle v_{\rm ej} \rangle$
Low- m BNS	SMNS	$O(10^{-3})$	$O(10^{-2})$	0.05 - 0.5	0.3 - 0.5	0.15
Mid- m BNS (stiff EOS)	HMNS	$O(10^{-3})$	$O(10^{-2})$	0.05 - 0.5	0.2 - 0.5	0.15
Mid- m BNS (soft EOS)	HMNS	$\sim 10^{-2}$	$O(10^{-2})$	0.05 - 0.5	0.2 - 0.5	0.20
High- <i>m</i> BNS $(q \sim 1)$	BH	$< 10^{-3}$	$< 10^{-3}$			
High- <i>m</i> BNS $(q \ll 1)$	BH	$O(10^{-3})$	$\lesssim 10^{-2}$	0.05 - 0.1	0.05 - 0.3	0.30
BH-NS	BH	0-0.1	0 - 0.1	0.05 - 0.1	0.05 - 0.3	0.30

- Mass ejection depends on the total mass M before the coalescence, binary mass ratio, component spins and tidal deformation (EOS)
- Final BH mass and spin, emitted GW energy
 → from numerical relativity simulations (Jimenez-Forteza+'18)
- Account for NS EOS → from NR simulations of BH+NS mergings (Zappa+'19)

Final spin of BH

Initial BH spin from population synthesis (PK+'19)

Final spin of BH

• Final BH spin is almost insensitive to uncertain NS EOS!

Residual disk mass from tidally disrupted NS (q<5)

Residual disk mass

- M_{disk} is determined by the mass ratio
- Strongly depends on NS EOS!
- Only large deformations (hard EOS) with A>1000 can give rise to interesting disk masses

Constraints from GW170817: ~200<∧< ~1600

NS equation of state constraints

1908.01012

Tidal deformation

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

1805.11579

Residual disk mass

BZ jet

$$\begin{split} L_{BZ} &\sim B_d^{\ 2} M^2 \Omega_H^2 f(\Omega_H) \\ B^2 &\sim \dot{M}_{accr} / M^2 \\ \dot{M}_{accr} &\sim M_{disk} / t_{accr} \\ E_{BZ} &= \varepsilon M_{disk} \Omega_H^2 f(\Omega_H) \\ \varepsilon &= 0.015 \quad (Barberi + '19) \end{split}$$

BZ jet kinetic energy

BZ jet kinetic energy

NS plunging into BH (q>5)

NS plunging into BH (q>5)

• A rotating BH in a magnetic field can acquire electric charge (Wald 1974)

$$\begin{aligned} Q_{\rm W,max} &\simeq \frac{2G}{c^3} J \times B_{\rm S,NS} = \frac{2G^2}{c^4} a M^2 B_{\rm S,NS} \\ &= 4.4 \times 10^{24} a \left(\frac{M}{10 M_{\odot}}\right)^2 \frac{B_{\rm S,NS}}{10^{12} \rm G} \text{ e.s.u.}, \end{aligned}$$

 There can be EM emission associated with charged BH (Levin+'18, Shu-Quing Zhong+'19...)

NS rotation and magnetic field before the coalescence

NS magnetic field for plunged NS

Wald BH charge

Wald BH charge

Conclusions

- NS+BH rate is one order of magnitude smaller than BH+BH rate, ~ a few is expected within LVC O3 detection horizon (as of 13/09/19, 2 out of 25 detections)
- Disk formation form NS tidal disruption mostly depends on (uncertain) NS EOS
- 1-10 % of NS+BH coalescences with tidally disrupted NS can launch relativistic BZ jets and produce short (likely subluminous) GRBs
- More exotic (but less secure) mechanisms of EM radiation from high-mass-ratio NS+BH plunges are not excluded